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ABSTRACT OF THESIS 

 

SEDIMENT ORGANIC CARBON FATE AND TRANSPORT IN A FLUVIOKARST 
WATERSHED IN THE BLUEGRASS REGION 

  

Mature karst topography is well recognized within the hydrology and geology 
communities to include subterranean fluid pathways that act as turbulent conduits 
conveying fluid from surface stream sinks called swallets to sources called springs.  
However, we find that little knowledge has been reported with regards to the transport and 
fate of terrestrially-derived sediment organic carbon (SOC) within karst watersheds. This 
study investigated the hypothesis that karst pathways could act as biologically active 
conveyors of SOC that temporarily store sediment, turnover carbon at higher rates than 
otherwise considered, and recharge depleted SOC back to the surface stream within the 
fluvial system. Mixed research methods were applied within a mature karst network. 
Methods included high resolution measurements of water and sediment characteristics of 
surface streams, carbon and stable carbon isotope measurements of transported sediment, 
and numerical modeling of water and sediment pathways. The mixing of sediment during 
net zero deposition and erosion was investigated in this study using a parameter calibrated 
to SOC data. Results of this study showed that heterotrophic bacteria in the subsurface 
conduit oxidized 0.05 tCkm-2y-1 resulting from the temporary storage of terrestrial carbon 
in the karst conduit. The subsurface conduit transports 0.15 tCkm-2y-1 out of the fluviokarst 
watershed. 

KEYWORDS: karst, fluvial system, organic carbon, watershed, sediment transport  
   modeling 

      Admin Husic 

      10-20-2015 



www.manaraa.com

SEDIMENT ORGANIC CARBON FATE AND TRANSPORT IN A FLUVIOKARST 
WATERSHED IN THE BLUEGRASS REGION 

 

By 

Admin Husic 
 

 

 

 

 

 

James Fox 

Director of Thesis 

Y. T. Wang 

 Director of Graduate Studies 

      10-20-2015



www.manaraa.com

iii 
 

Acknowledgements 

The following thesis benefitted from the input of several people. Firstly, I would 

like to thank my Thesis Chair, Dr. James Fox, for his support and encouragement.  I would 

also like to thank the other members of my Thesis Committee: Dr. Yi-Tin Wang and Dr. 

Carmen Agouridis. Jim Currens and others at the Kentucky Geological Survey have 

provided great support in the field and laboratory. Finally, I would like to thank the 

University of Kentucky Civil Engineering Department for providing me the academic 

support to develop and implement my ideas.  

  



www.manaraa.com

iv 
 
 

Table of Contents 

Acknowledgements ................................................................................................ iii 

List of Tables ........................................................................................................ vii 

List of Figures ...................................................................................................... viii 

Chapter 1 Introduction ............................................................................................ 1 

1.1 Background ............................................................................................1 

1.2 Research Need .......................................................................................3 

1.3 Objectives ..............................................................................................5 

1.4 Thesis Layout .........................................................................................6 

Chapter 2 Literature Review ................................................................................... 9 

2.1 Karst Processes ......................................................................................9 

2.1.1 Geologic ..............................................................................................9 

2.1.2 Hydrologic ........................................................................................11 

2.1.3 Hydraulic...........................................................................................12 

2.1.4 Darcy-Weisbach Friction Factor .......................................................14 

2.2 Fluvial Processes ..................................................................................16 

2.2.1 Sediment Production .........................................................................16 

2.2.2 Deposition and Sedimentation ..........................................................17 

2.2.3 Sediment Transport and Downstream Flux ......................................17 

2.3 Sediment Organic Carbon Processes ...................................................18 

2.3.1 Source ...............................................................................................20 

2.3.2 Generation .........................................................................................21 

2.3.3 Decomposition ..................................................................................22 

2.4 Sediment Transport Studies in Karst ...................................................23 

2.5 Sediment Organic Carbon Studies in Karst .........................................24 

2.6 Water, Sediment, and SOC Source, Fate, and Transport in Karst .......26 

2.6.1 Flow and Storage of Water in Karst .................................................26 

2.6.2 Dye Tracing ......................................................................................27 

2.6.3 Mapping of Karst Features................................................................28 

2.6.4 Laboratory Studies ............................................................................29 



www.manaraa.com

v 
 
 

2.6.5 Hydrograph Separation .....................................................................29 

2.6.6 Isotope Analysis ................................................................................30 

2.6.7 Numerical Modeling .........................................................................30 

Chapter 3 Study Site ............................................................................................. 39 

3.1 Physiogeographic Setting.....................................................................40 

3.2 Geology ................................................................................................41 

3.3 Human Disturbances ............................................................................42 

3.4 Historic Study of System .....................................................................43 

3.5 Water Processes, Source, and Mechanics ............................................45 

3.6 Sediment Transport Sources and Processes .........................................46 

3.7 Carbon Mechanisms and Transport .....................................................47 

Chapter 4 Methodology ........................................................................................ 51 

4.1 Water Data ...........................................................................................51 

4.1.1 Stream Gages ....................................................................................51 

4.1.2 Observation Wells .............................................................................52 

4.1.3 Dye Traces ........................................................................................54 

4.2 Sediment Data ......................................................................................56 

4.2.1 Total Suspended Solids Pumps and Samplers ..................................56 

4.2.2 Sediment Flux ...................................................................................57 

4.2.3 Particle Size Distribution ..................................................................60 

4.3 Carbon Data .........................................................................................61 

4.3.1 Source Sampling ...............................................................................61 

4.3.2 Outlet Sampling ................................................................................62 

4.3.3 Lab Analysis .....................................................................................63 

4.4 Numerical Modeling ............................................................................64 

4.4.1 Water Budget and Hydrologic Model ...............................................65 

4.4.2 Hydraulic Model ...............................................................................66 

4.4.3 Carbon Model ...................................................................................73 

4.4.4 Model Inputs and Parameterization ..................................................79 

4.4.5 Calibration and Validation ................................................................81 

4.4.6 Sensitivity and Uncertainty Analysis ................................................83 

4.4.7 High Performance Computing ..........................................................85 



www.manaraa.com

vi 
 
 

Chapter 5 Results ................................................................................................ 100 

5.1 Model Evaluation ...............................................................................100 

5.1.1 Water ...............................................................................................100 

5.1.2 Sediment .........................................................................................100 

5.1.3 Sediment Organic Carbon ...............................................................101 

5.1.4 Sensitivity of Palgae ..........................................................................103 

5.2 Temporal and Spatial Distributions of Water, Sediment, and Sediment 
Carbon ......................................................................................................104 

5.2.1 Water ...............................................................................................104 

5.2.2 Sediment .........................................................................................105 

5.2.3 Sediment Organic Carbon ...............................................................107 

5.3 Long-term Budgets of Water, Sediment, and Sediment Carbon .......108 

5.3.1 Water ...............................................................................................108 

5.3.2 Sediment .........................................................................................109 

5.3.3 Sediment Organic Carbon ...............................................................110 

Chapter 6 Discussion .......................................................................................... 128 

6.1 Karst Conduits as Active Biologic Conveyors ..................................128 

6.2 Physical and Biogeochemical Processes in Karst Systems................129 

6.3 Advancement of Water Quality Modeling .........................................134 

Chapter 7 Conclusions ........................................................................................ 136 

References ........................................................................................................... 139 

Vita ...................................................................................................................... 161 

 

 

  



www.manaraa.com

vii 
 
 

List of Tables 

Table 2-1: Table of Discharges and Catchment Areas for Karst Springs ......................... 32 

Table 4-1: Flow rate relationships between stream gages in Cane Run Watershed ......... 86 

Table 4-2: Relationships between sediment concentration, 𝐶𝐶𝐶𝐶𝐶𝐶, and stream flow rate, 𝑄𝑄 86 

Table 4-3: Conduit Bathymetry, QSS Inflow, and Land Use Information for Model Cells

........................................................................................................................................... 87 

Table 4-4: Un-mixing Results for Means of Data Inputs using Carbon Stable Isotope ... 87 

Table 4-5: Inputs and parameter values for sediment transport model ............................. 88 

Table 4-6: Carbon and δ13C Uncertainty Analysis Inputs ................................................ 89 

Table 5-1: Sensitivity Analysis Percent Change in Sediment Yield (SY) ...................... 112 

Table 5-2: Sensitivity Analysis Percent Change in average Suspended Sediment SOC%

......................................................................................................................................... 112 

Table 5-3: Carbon Source Contribution for Fixed Algae Percent using Monte Carlo 

Simulation (n = 10,000) .................................................................................................. 113 

Table 5-4: Carbon Model Calibration and Validation Uncertainty using Monte Carlo 

Simulation (n = 10,000) .................................................................................................. 113 

 

 

 

  



www.manaraa.com

viii 
 
 

List of Figures 

Figure 2-1: Common Karst Topographical Features (KGS, 2002)................................... 34 

Figure 2-2: Conceptual Model of Surface-Subsurface Hydraulics Using an Observed 

Hydrograph ....................................................................................................................... 35 

Figure 2-3: The Fluvial System (Miller, 1990) ................................................................. 36 

Figure 2-4: In-stream sediment carbon physical and biogeochemical processes including 

advective flux in and out of the stream reach, dissolution, precipitation, erosion, 

deposition, invasion, evasion, assimilation, sloughing, decomposition, aggregation, and 

bacterial respiration. (Ford and Fox, 2012) ...................................................................... 37 

Figure 2-5: Conceptual Model of SOC Transport in Fluviokarst ..................................... 38 

Figure 3-1: Location Map of Cane Run Watershed and Royal Spring Basin ................... 48 

Figure 3-2: Cane Run Creek Land Use Map .................................................................... 49 

Figure 3-3: Qualitative Dye Traces in Royal Spring (adapted from Lee, 2012) .............. 50 

Figure 4-1: Fluviokarst Sediment and Carbon Transport Calibration Method. STAGE 1: 

model preparation. Sediment pirated from tributaries (𝑄𝑄𝑄𝑄𝑄𝑄), conduit flow rate (𝑄𝑄𝑄𝑄), and 

hydraulic and hydrologic inputs were supplied to the Sediment Transport Model. STAGE 

2: sediment calibration. Transport coefficients (𝐶𝐶𝐶𝐶𝐶𝐶) are adjusted so that model results 

reflect TSS data. STAGE 3: carbon calibration. Sediment transport model results, carbon 

source unmixing, decomposition rates (𝑘𝑘), and percent algae (%𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) were used as 

inputs to the Carbon Model which was calibrated by adjusting the soil decomposition rate 

(𝑘𝑘𝐶𝐶𝑘𝑘𝑄𝑄𝑎𝑎) and sediment exchange rate (𝑎𝑎𝑒𝑒) to reflect SOC data. ......................................... 90 

Figure 4-2: TSS vs Turbidity Relationship for Groundwater Station Samples ................ 91 

Figure 4-3: Velocity and Concentration Profiles in Surface Streams ............................... 92 

Figure 4-4: Velocity and Concentration Profiles in Karst Conduit .................................. 93 

Figure 4-5: Particle Size Distributions a) urban tributary, b) agriculture tributary, c) 

surface outflow, d) subsurface outflow. (1) and (2) indicates multiple samples taken on 

same date. .......................................................................................................................... 94 

Figure 4-6: Sediment Trap Sampler (Phillips et al., 2000) ............................................... 95 

Figure 4-7: Weekly Max Flows Royal Spring vs Conduit (Groundwater Station) .......... 95 



www.manaraa.com

ix 
 
 

Figure 4-8: Modeling Framework for Coupled Surface-Subsurface Model ..................... 96 

Figure 4-9: Conceptual Water Budget for Coupled Drainage Network ........................... 97 

Figure 4-10: Friction Factor vs Conduit Velocity............................................................. 98 

Figure 4-11: Flow and Sediment into Subsurface Conduit Conceptualization (GW = 

Groundwater Station, RS = Royal Spring). Conduit geometry increases from Cell 1 – 10 

then remains constant from Cell 10 – 16. ......................................................................... 99 

Figure 5-1: Suspended Sediment Discharge (Groundwater Station) Model Calibration and 

Validation ........................................................................................................................ 114 

Figure 5-2: Sensitivity Analysis for Sediment Model .................................................... 115 

Figure 5-3: Calibration and Validation of Carbon Model. Model results are for the 

springhead in comparison with the sediment carbon trap measurements also collected at 

the springhead. ................................................................................................................ 115 

Figure 5-4: Sensitivity Analysis for Carbon Model ........................................................ 116 

Figure 5-5: Monte Carlo Simulation (n = 10,000) Source Contribution Results for Fixed 

Algae Percentage ............................................................................................................ 116 

Figure 5-6: Inflows (a and b) and Outflows (c and d) to the Coupled Drainage Network 

Normalized by Maximum Flow Rate at Each Location ................................................. 117 

Figure 5-7: Well stage at the Groundwater Station (Cell #10) ....................................... 118 

Figure 5-8: Tributary Suspended Sediment Flux with a) high flows and b) low flows .. 119 

Figure 5-9:  Model Results (Groundwater Station) for 2011-2013 Water Years ........... 120 

Figure 5-10: Longitudinal Bed Depth Changes in Conduit ............................................ 121 

Figure 5-11: Sediment Organic Carbon Flux in Subsurface Conduit ............................. 122 

Figure 5-12: Organic Carbon Percentage in Suspended Sediment and Bed Sediment... 122 

Figure 5-13: Fractioning of Carbon Pools in Conduit Bed ............................................. 123 

Figure 5-14: Fractioning of Carbon Sources in Suspended Conduit Load ..................... 123 

Figure 5-15: Bi-weekly Carbon Decomposition Yield in Subsurface Conduit .............. 124 

Figure 5-16: Water Budget for Cane Run Fluviokarst Watershed ................................. 125 

Figure 5-17: Sediment Budget for Cane Run Fluviokarst Watershed ............................ 126 

Figure 5-18: Carbon Budget for Cane Run Fluviokarst Watershed ............................... 127 



www.manaraa.com

 

1 
 

Chapter 1 Introduction 

1.1 Background 

Fluvial networks are recognized to not only act as conveyors of sediment organic 

carbon, but also to serve as ecosystems that can actively turnover terrestrial-derived carbon 

and generate new autochthonous organic matter (Battin et al., 2008; Ford and Fox, 2012). 

Terrestrial-derived sediment organic carbon originates in the uplands within surface soils 

and streambank sediments where it is then transported downstream during hydrologic 

events.  The upper layer of the stream bed, known as the surface fine grained laminae, can 

act to sequester carbon via algal and macrophyte production (Droppo and Stone, 1994; 

Ford and Fox, 2012.  Mild sloping channels and low dissolved organic carbon 

concentrations coupled with the process of photosynthesis create depositional areas where 

autochthonous organic carbon can be synthesized from inorganic materials through 

primary production and other allochthonous carbon sources can be deposited or 

decomposed via heterotrophic bacteria (Leithold et al., 2005; Walling et al., 2006; Ford 

and Fox, 2012; Lane et al., 2013). The surface fine grained laminae can also act as a source 

of carbon dioxide due to breakdown of organic carbon by the active microbial pool 

(Aufdenkampe et al., 2011; Butman and Raymond, 2011). The process of organic carbon 

decomposition outgasses carbon dioxide to the atmosphere and is as important as primary 

production to the ecosystem (Moorhead et al., 1996). The impact that fluviokarst 

topography has on these hydrobiological processes is an area where relatively little is 

known due to system heterogeneity and complexity.  
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The realization of the biologically active nature of fine sediment has created the 

basis for much of the research activity in recent years due to the high uncertainty 

surrounding the fate of active sediments within fluvial carbon budgets that can be 

integrated into local ecosystem budgets (Griffiths et al., 2012) as well as regional and 

global carbon cycling models (Cole et al., 2007; Butman and Raymond, 2011). The 

uncertainty associated with the enrichment and degradation of organic carbon can also be 

incorporated into modeling the ability of sediment to fuel denitrifying bacteria that can 

transform and remove nutrients from stream water (Mulholland et al., 2008; Findlay et al., 

2011; Newcomer et al., 2012). It is now recently recognized that sediment organic carbon 

microbial turnover in low order streams is a highly active constituent to the hydrobiological 

carbon cycle and constitutes 10% of the net ecosystem exchange of carbon in the United 

States (Battin et al., 2008; Butman and Raymond, 2011). Current unknowns within the 

literature include in-stream carbon transformation rates, CO2 degassing rates, sediment 

carbon exports, interactions of carbon pools, and regional carbon budget estimates 

(Alvarez-Cobelas et al., 2010; Raymond et al., 2013; Creamer et al., 2015; Ford and Fox, 

2015; Graça et al., 2015; Sobczak and Raymond, 2015). The topic of sediment organic 

carbon fate and transport in fluviokarst systems is one that requires further study and thus 

is the focus of this research.  

In this thesis we investigate the role of karst topography in augmenting transit of 

fine sediment and the source-sink capacity of temporarily stored sediment organic within 

the coupled surface-subsurface drainage network. Karst landscapes are typified as 

solutionally dissolved landscapes that are dominated by secondary porosity via fractures 

and conduits that produce low-resistance pathways for water transport (Shuster and White, 
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1971; Thrailkill, 1974; Smart and Hobbs, 1986).  Fine sediment (i.e., sediment with a 

diameter less than 53 micron) is naturally generated during hydrologic events through the 

erosion of upland areas, stream beds, and stream banks. Anthropogenic land use practices 

have exacerbated natural erosion rates and have elevated fine sediment delivery to streams 

which can often times prove deleterious to aquatic life by limiting light penetration thus 

smothering fish eggs and other aquatic organisms, killing aquatic flora, and transporting 

contaminants such as heavy metals (Brookes, 1986; Davies-Colley et al., 1992; Wood and 

Armitage, 1997; Owens et al., 2001). The organic portion of fine sediment is composed of 

particulate organic carbon (POC) and dissolved organic carbon (DOC).  Organic carbon is 

a vital component of the aquatic food web, soil structure and strength, and in the buffering 

of harmful substances (Miller and Donahue, 1990; Conant et al., 2001).  

The coupling of hydrogeological and hydraulic physical mechanisms with 

biological decomposition processes in a fluviokarst watershed is presented in this thesis to 

develop a new conceptual model of sediment organic carbon fate and transport in karst 

landscapes. The research investigates subsurface conduit processes such as erosion, 

transport, and deposition that impact bed level changes, organic carbon decomposition, and 

sediment mixing.  

1.2 Research Need 

Karst landscapes and aquifers are some of the most prevalent topographical features 

in the world. It is estimated that karst landscapes make-up over one fifth of the land area 

in the United States (Ford and Williams, 2007), and up to one quarter of the global 

population has been estimated to live in regions dominated by karst landforms and receive 
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their drinking water from karst aquifers (Leibundgut, 1998; Bakalowicz, 2005; Fleury, 

2009). While the importance of karst hydrology is well-recognized, measurements of 

various processes are hindered by the lack of applicable sensing networks, extremely 

complex systems, difficult to reach locations, and simply by the fact that many of the 

underground processes cannot be visualized or mapped.  Reaching the point of recording 

hydrologic, hydraulic, and biologic measurements remotely in a natural, underground 

conduit is an arduous process that requires intense resources, manpower, monitoring, and 

upkeep. A need for a conceptual fluviokarst sediment and carbon transport model to be 

developed based on data that can be collected with well-accepted borehole drilling 

techniques, monitoring instruments, and sampling methods is evident in making decisions 

with regards to karst water resources and land management.  

Water transported through karst conduits often has high velocity, turbulent flows 

more analogous to freshwater streams than groundwater flow. Due to these fast transport 

mechanisms, pollutants originating from agricultural and urban runoff are flushed through 

the subterranean karst to springs and wells that often times serve as drinking water sources 

(Mikac et al., 2011). Carbon enriched sediments are then often times redirected from 

surface pathways to subsurface caves where deposition occurs resulting in storage of 

sediment and induced bacterial activity. Accumulated sediment in shallow temperate zone 

caves has been shown to have high carbon dioxide levels which indicate high microbial 

activity leading to organic carbon decomposition (Baldini et al., 2006).  There is a need to 

investigate how sediment organic carbon is mobilized, deposited, and transformed in 

environments where surface pathways and subsurface conduits have a strong hydrologic 
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coupling so as to better understand the impact of land use practices on human and 

environmental health as well as carbon exchange dynamics. 

1.3 Objectives 

The primary objective of this research was to develop a model framework that 

would couple upland sediment erosion with hydrologic, hydraulic and carbon 

decomposition models to estimate the transformation of sediment during temporary storage 

in a fluviokarst watershed located in the Bluegrass Region of Kentucky, USA. The 

coupling of these different physical and biological processes would elucidate unknowns in 

fluviokarst hydrogeology and investigate new viewpoints to the biogeochemical 

transformations occurring within dual surface-subsurface fluviokarst systems. In order to 

meet this primary objective, several specific objectives were identified:  

1. Review of the literature to understand the geological, hydrologic, and hydraulic 

properties of karst systems including how the systems are formed and how the 

systems react to hydrologic events. 

2. Review of the literature to understand watershed and river sedimentation and 

erosion processes ranging from upland production and in-stream transport to 

eventual fate.  

3. Review of stream biological processes to investigate carbon source, generation, 

and decomposition.  

4. Selection of a study watershed and description of the methods for data and 

sample collection. 
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5. Description of laboratory methods for estimating sediment concentration and 

carbon density and isotope ratios. 

6. Development of a physical model framework linking the surface stream 

hydrology with the subsurface closed-conduit hydraulic flow system. 

7. Development of an organic carbon model framework linking carbon sources in 

the uplands with carbon decomposition and flux in the subsurface conduit. 

8. Performing a water budget to assess the storage capacity of the karst aquifer 

9. Performing a sediment budget to estimate the amount of surface sediment 

pirated by swallets and other karst features. 

10. Performing a carbon budget to investigate the enrichment or decomposition of 

sediment organic carbon within the system and to estimate the sink or source 

capabilities of fluviokarst.  

11. Testing the sensitivity of the sediment transport model by varying parameters 

against the calibrated values determined from field data collection. 

12. Testing the uncertainty of the carbon model by performing 10,000 Monte Carlo 

realizations to estimate variability of carbon sources into the system. 

13. Providing results of the study and preliminary estimates of sediment organic 

carbon decomposition within temperate, mature fluviokarst watersheds.  

1.4 Thesis Layout 

Chapter 1 provides the motivation for this research through detailing the state of 

current research on sediment and carbon transport in fluvial and karst systems, the need to 

fill knowledge gaps in this area of literature, and the objectives of this research effort.  
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Chapter 2 provides a literature review of karst processes including geologic, 

hydrologic, hydraulic, and processes related to energy loss in fluviokarst networks. 

Afterwards, fluvial sediment mobilization, deposition, and transport processes are 

explained and visualized. Literature on organic carbon source, generation, and 

decomposition in watersheds is overviewed. Finally, methods for investigating the above 

are outlined.  

Chapter 3 provides information on the study watershed including the 

physiogeographic setting, geology, disturbances, historic study, as well as water, sediment, 

and carbon transport processes occurring in the watershed.  

Chapter 4 outlines the methodology used in the presented research. Included in this 

section are water and sediment field instrumentation and collection methods, laboratory 

sample analysis, and the numerical framework for sediment and carbon modeling.  

Chapter 5 presents the results for the water budget from the field instrumentation, 

the sediment budget from sample collection and sediment transport modeling, and the 

carbon budget including source and decomposition.  

Chapter 6 provides a discussion on the role of fluviokarst in sediment transport and 

the physical impacts of fluviokarst on sediment organic carbon. The role of fluviokarst in 

the transformation of organic carbon and the biogeochemical impacts of fluviokarst on 

sediment organic carbon are presented.  The juxtaposition between carbon behavior in 

surface and subsurface streams is discussed. Finally, the implications the findings of this 

research have on global carbon budget modeling are explored. 
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Chapter 7 provides the conclusions of this thesis and potential future work on the 

research topic. 
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Chapter 2 Literature Review 

2.1 Karst Processes 

Karst landscapes are formed by the chemical dissolution of soluble calcium 

carbonate rock (White, 1988) as shown by  

CaCO3 + H2CO3 = Ca+2 + 2HCO3
−,                                                (1) 

where, CaCO3 is calcite, Ca2+ is the positive calcium ion, 2HCO3
− is the bicarbonate ion, 

and H2CO3 is carbonic acid represented by the equation 

H2CO3 = H2O + CO2,                (2) 

where, H2O is water and CO2 is carbon dioxide.  The chemical dissolution processes occur 

as rainfall delivers slightly acidic water that seeps through soil and dissolves calcium 

carbonate bedrock over time. The result is creation of surface features such as epikarst, 

sinkholes, and springs.  It is estimated that karst landscapes make-up over one fifth of the 

land area in the United States and 12% of the land area globally (Ford and Williams, 2007). 

2.1.1 Geologic 

Calcium carbonate rock is originally formed by the accumulated precipitation of 

calcite and aragonite by marine animals for shell and skeleton building or precipitated in 

the tissues of algal plants. Through lithification, water pressure compacts the precipitated 

calcite and aragonite and, over time, forms limestone. Limestone and dolomite are the most 

common rock formations that are susceptible to karst development. These carbonate rocks 

are dissolved through weathering, erosion and chemical processes. Initially fractures (50-

500 micrometers) are created in the bedrock and over time these fractures increase in size 
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as a result of dissolution and particle detachment by fluid shear forces. Once the fractures 

pass a certain threshold (typically about 1 cm), the rate of dissolution of the bedrock 

increases significantly and varying sizes of conduits are formed (White, 2002).  

The classification of many karst systems, with respect to water-bearing properties, 

is determined by the distribution, frequency, and scale of void spaces, fractures, and 

conduits. The three types of porosity in karst are matrix permeability, fracture permeability, 

and conduit permeability (White, 2002; Scanlon et al., 2003). Matrix permeability consists 

of the intrinsic intergranular pore spaces formed during lithification and other micro-voids. 

Fractures are formed from mechanical joints and bedding plane partings which are later 

enlarged by solution. Conduits and caves are large openings ranging from 1 cm to 10+ 

meters which are formed by extensive preferential dissolution typically along bedding 

planes (White, 2002; Bonacci et al., 2009).  

Figure 2-1 shows examples of different karst features created by dissolution of 

limestone bedrock. Topographical karst features such as sinkholes, swallets, and estavelles 

are formed by the dissolution of near-surface bedrock and washing out of underlying soils. 

Dolines, or sinkholes, can be formed by drawdown initiation in the subcutaneous zone 

where perched water in the epikarst is funneled towards higher permeability zones that 

result in forming a depression (Kemmerly, 1982). Sinkholes are also created through the 

suffosion of soil, which is an event in which loose, non-cohesive soil sits on top of fissures 

or joints of a karst landform, rainfall percolates through the layers of soil recreating the 

dissolving effect of the carbonate rock until, eventually, enough of the overlying rock has 

been dissolved to cause the soil to collapse into a cave void (Khomenko, 2006).  
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2.1.2 Hydrologic 

There are various types of recharge that contribute flow into a karst aquifer and to 

the karst drainage network. Allogenic recharge is provided by surface streams that drain 

from non-carbonate regions of a watershed into sinkholes (Thrailkill, 1991). Autogenic 

recharge is provided by rainfall infiltration into the karst aquifer via fracture and matrix 

permeability as well as percolation through the epikarst and soil (White, 2002). Storage 

within a limestone aquifer acts as a two-component system. A minor component to the 

storage system is in both abandoned and active conduits as well as subsurface caves. 

Conduits can be massive features with diameters in the tens of meters, but they are not as 

prevalent as smaller voids and macropores. The majority of the storage within the karst 

aquifer is in the form of groundwater that lies within the narrow fissures and openings in 

bedrock (Einsiedl, 2005).   

While most of the water is stored in the narrow fissures within the rock, the flow 

velocities within these fissures, while not laminar, is very slow (Lapcevic et al., 1999; Qian 

et al., 1999, 2005). The bulk of the water conveyed underground is transmitted through 

solutionally enlarged conduits (Atkinson, 1977; Palanisamy and Workman, 2014).  

Conduits are often times closely connected to the surface through swallets and other large 

openings which bypass infiltration and provide direct recharge and quickflow to the karst 

aquifer. When coupled to the surface streams of the fluvial network, mature karst 

topography is well recognized to pirate as much as 0.26 m3 s-1km-2 from the land surface 

only to resurface tens to hundreds of kilometers from the sink locations (Ford and Williams, 

1989). Conduits also work to drain the sustained, diffuse flow from the surrounding rock 
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fracture matrix. This diffuse flow provides a constant flow to springheads in the system 

given that they are below the aquifer water table (Lee and Krothe, 2001). 

Table 2-1 reviews the minimum, mean, and maximum spring discharges from karst 

aquifers around the world. The variability in drainage area and magnitude of discharge 

serve to show how many similarly sized aquifers can possess very different hydrogeologic 

properties due to the heterogeneity of karst evolution (i.e. some of the aquifers are 

dominated by primary or matrix porosity and others by secondary or tertiary porosity). 

Many of the springs are perennial and serve as drinking water sources.  

2.1.3 Hydraulic 

Phreatic conduits are typically below the water table and therefore have a 

downstream control structure, i.e., subterranean dam, or adverse conduit gradient in the 

streamwise direction that produce saturated conditions (Lauritzen et al., 1985; Jeannin, 

2001).  In terms of hydraulics, phreatic conduits have an upper limit for their energy 

gradient and thus upper limit for fluid conveyance due to the existence of the downstream 

controls.  The “carrying capacity” principle of conduit drainage systems describes the 

process by which flow begins to overtop swallets due to the karst aquifer reaching a 

maximum flow capacity (White, 2002).     

Karst conduits behave in a manner similar to that of pipes in a water distribution 

network (Ray, 2005). The similarities between karst systems and water distribution systems 

has led many researchers to apply concepts of water distribution to flow problems in karst 

aquifers (Jeannin, 2001; Liedl et al., 2003; Fiorillo, 2011). Flow in karst conduits is always 

turbulent and cannot be described by traditional groundwater laws such as Darcy’s Law 

and the Hagen-Poiseuille Law which are restricted to laminar flow. The Darcy-Weisbach 
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equation is used almost exclusively when referring to energy losses within karst aquifers 

(Gale, 1984; Lauritzen et al., 1985; Smart, 1988; Springer, 2004; Kaufmann, 2009). 

Friction factors, head losses, and roughness heights in karst conduits have extreme 

variability from not just one system to the next, but also within the same system depending 

on the method used to determine energy loss terms (Worthington, 1991; Jeannin 2001).  

A key factor in the coupled system is the interaction between the karst subsurface 

drainage network with above-ground hydrologic processes such as stream flow, runoff and 

precipitation. Swallets provide a one-way point source of flow and sediment into the 

subsurface conduit. On the other hands, estavelles are karst features with a dual function 

that link and interact between the surface and subsurface drainage networks. There are two 

phases that the estavelle can act in: the estavelle is either acting as an intermittent spring 

(outflow) or as a ponor (inflow). Factors influencing in which phase the estavelle will act 

are stream stage, groundwater level, flow rate in the conduit, and maximum carrying 

capacity (Milanovic, 2004). Research performed by Bailly-Comte et al. (2008) suggests 

that when water is released through the estavelle, it is a result of previous entrapped water 

being flushed out (i.e., storage-release) by a rise in the water-table of the karstic aquifer.  

Figure 2-2 depicts the various flow types in a coupled surface-subsurface network. 

Flow can be seen reversing depending on stream elevations and pressure heads within the 

conduit. The hydraulics of the system are heavily influenced by the surface hydrograph 

and swallet-flow interactions. In Phase 1, diffuse seepage from fractures and pores provides 

the entirety of the spring baseflow; discharge is a function of the water table elevation. In 

Phase 2, the onset of the storm event activates certain swallet features depending on spatial 

and temporal variability of precipitation and runoff. In Phase 3, the conduit and surface 
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channel are completely submerged in water and pipe-full conditions are realized 

throughout the system. Flow is strongly governed by the stage levels throughout the stream. 

In the final phase, Phase 4, the system begins to drain and the water-saturated epikarst 

supplies flow to the subsurface until normal baseflow conditions are once again satisfied. 

2.1.4 Darcy-Weisbach Friction Factor 

The Darcy-Weisbach friction factor, f, is an experimental value that attempts to 

predict the head loss in pipes and fittings (Moody, 1944; Brown, 2002). The Moody 

Diagram, from the work of Rouse (1976), was developed in an attempt to graphically 

ascertain the coefficient of friction for a pipe  

𝑓𝑓 = ∅ �𝑅𝑅𝑎𝑎, 𝜀𝜀
𝐷𝐷
�,                 (3)  

where, 𝑅𝑅𝑎𝑎 is the Reynolds number (unitless), 𝜀𝜀 is the roughness of the pipe (m), and 𝐷𝐷 is 

the diameter of the pipe (m). 

The Moody Diagram shows that for relatively smooth pipes the friction factor will 

remain constant in the turbulent zone (Re > 4000). Karst landscapes are often characterized 

by the presence of high Reynolds numbers. These turbulent flow pathways enable 

advection of fluid and sediments at rates often on par with surface streams and much higher 

than well-studied non-karst groundwater systems. The Darcy-Weisbach equation defines 

the friction factor as  

𝑓𝑓 = ℎ𝐿𝐿
2𝑔𝑔𝐷𝐷
𝑣𝑣2𝐿𝐿

,                  (4) 

where, ℎ𝐿𝐿 is the head loss between two locations (m), 𝑎𝑎 is the acceleration due to gravity 

(m s-2), 𝑣𝑣 is the velocity of the fluid (m s-1), and 𝐿𝐿 is the pipe length (m).  
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The friction factor is shown to differ greatly from location to location. Research 

studies done in the Mendip Hills, Great Britain region show that friction factor varied with 

discharge, from an f of 35 at the largest discharge to 140 for the lowest discharge at a 

location named Reservoir Hole (Atkinson, 1977).  One potential reason for this large 

difference in friction factor is that air-filled voids in the water table change the average 

hydraulic radius of the conduit to some extent with discharge. Another hypothesis is that 

constrictions and changes of area within the conduit dramatically change the friction factor 

for different flows in a non-linear manner. However, Atkinson calculated f based on 

straight-line flow velocities and straight-line hydraulic gradients which will tend to 

overestimate f.   

 Scallops in cave conduits have also been used to calculate friction factors (Gale, 

1984). Scallops are polygonal intersecting depressions whose form is hydraulically 

controlled. Scallops develop at a stable scallop Reynolds number of 1000-3000. Studies by 

many different researchers all confirm scallop formation in the laminar-turbulent flow 

transition phase (Allen, 1971; Curl, 1974).  However, scallops are not representative of the 

full range of discharges within a conduit because they are typically only formed at high 

flows.  

The head losses associated with friction along a conduit can occur at many different 

locations and are not always distributed equally over the length of the conduit. A study by 

Bögli (2012) suggested that 98% of the 2.6 km passage accounted for only 1.3% of the 

total head loss. This disproportionality is extremely important when considering how a 

friction factor should be applied over a stretch of conduit. 11% of the head loss was due to 

change in cross-section, 1.7% for passage bends, 35% for a short, narrow section of the 
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conduit, and 51% for a section of the conduit that was broken-down. Caves almost always 

have narrow sections or breakdowns that could heavily skew the friction factor.  

2.2 Fluvial Processes 

The fluvial system is a continuum that consists of three connected zones linking the 

uplands to the watershed outlet (Figure 2-3) (Miller, 1990). Zone 1, or the headwaters, is 

the erosion producing area where streamflow is initiated and incipient sediment motion 

occurs. Zone 2, or the transfer zone, is the part of the watershed where the fluvial system 

is the most stable and well-defined with regards to fluvial processes and 

hydrogeomorphology. The downstream portion is called Zone 3, or the depositional zone, 

and is near the outlet of the system where aggradation occurs (Chang, 1988).  

2.2.1 Sediment Production 

Sediment production from soil is a two-phase process including detachment and 

transport. In the uplands, runoff and rainsplash are the main mechanisms by which soil is 

detached (Proffitt and Rose, 1991; Morgan, 1995; Toy et al., 2002; Van Dijk et al., 2003). 

Detached sediment is then transported down gradient towards valleys and streams by 

overland flow and in gullies. Fluvial erosion is the result of induced shear stresses on 

stationary soil particles and the bursting and sweeping caused by turbulent ejections 

(Kaftori et al. 1998; Papanicolaou et al., 2001; Wu and Chou, 2003). The critical shear 

stress of a particle is a measure of the ability of the soil particle to resist detachment from 

the soil surface and subsequent entrainment into the fluid column by hydrodynamic shear 

stresses. Incipient motion occurs when this threshold is overcome (Shields, 1936; Wiberg 

and Smith, 1987; Papanicolaou and Hilldale, 2002). Soil erosion estimates can be 
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calculated from well accepted models such as the Revised Universal Soil Loss Equation 

(RUSLE) and are built into many hydrologic and sediment models.  

2.2.2 Deposition and Sedimentation 

Eroded sediment that enters the stream channel is conveyed downstream by the 

energy of the fluid to keep the sediment entrained. Once the carrying capacity of the fluid 

is exceeded deposition begins to occur (e.g. over-saturation of sediment or hydrograph 

recession) (Salaheldin et al., 2000). Temporary stored sediment is typically re-suspended 

at the advent of a subsequent large flow event and later deposited further downstream in 

the watershed (Walling and Amos, 1999; Smith et al, 2003). This creates a dynamic quasi-

equilibrium condition particularly in the transfer zone where erosion rates are nearly equal 

to depositional and uplift rates. (Cyr and Granger, 2008; Tucker, 2009).  

2.2.3 Sediment Transport and Downstream Flux  

The transport of sediment in fluvial networks is typically broken down into three 

distinct size classifications: bedload, suspended load, and wash load. The bedload is the 

portion of sediment that is transported near the bed of the stream through the action of 

rolling, sliding, or saltation. The suspended load is made up primarily fine sediment (< 53 

micron diameter) that is entrained completely by the flow and is transported at the same 

speed as the flow. The wash load is made up of the smallest particles in the bed material 

that are eroded and swept away almost immediately at the onset of hydrologic activity 

(Woo et al., 1986; Chang, 1988; Evans et al., 2006). There are many methods to estimate 

the quantity of sediment transported and delivered to the downstream portions of a 

watershed such as streamflow sampling, reservoir sedimentation surveying, sediment-



www.manaraa.com

 

18 
 

delivery method, empirical equations, and simulated-watershed sediment models (Piest et 

al., 1975). 

Sediment from rivers can exhibit controls on both morphologic and biological 

processes occurring in the stream channel (MacIntyre et al., 1990; Tank et al., 2010; Ford 

and Fox, 2012).  High sediment loads can also negatively affect the ease by which humans 

use freshwater for recreation and hydration. Sediment loads slow down the ability of water 

treatment plants to process water, require dredging from reservoirs and dams, and affect 

the visual aesthetics of recreational waters (Smith et al., 1995; Morris and Fan, 1998; 

Pflüger et al., 2010). Investigation of sediment loading into subsurface environments and 

the temporary storage of pirated sediment has been relatively unstudied in the community. 

This study will create a sediment budget to balance sources and sinks of sediment in 

coupled surface-subsurface drainage networks. 

2.3 Sediment Organic Carbon Processes 

The two sources of sediment organic carbon investigated in this study are 

terrestrial-derived, or allochthonous, organic carbon and autochthonous, in-stream 

generated carbon. Autochthonous matter is created through photosynthetic production by 

primary producers in the benthic environment. Allochthonous material is delivered to the 

stream ecosystem by litterfall from vegetation, streambank erosion, and by entrained soil 

organic matter in overland flow into the stream. Transported organic carbon consists of 

dissolved and particulate phases where dissolved organic carbon has a diameter less than 

0.45 micrometers. Particulate organic carbon is separated into two different size classes: 
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fine particulate organic matter (FPOM) and coarse particulate organic matter (CPOM). 

FPOM has a diameter of 53 micron or less whereas CPOM particles have larger diameters.   

Figure 2-4 (Ford and Fox, 2012) shows the possible interactions between the 

organic, inorganic, particulate, and dissolved constituents of in-stream carbon. Inflow from 

uplands and tributaries is delivered to the stream where the inorganic portion can undergo 

precipitation or dissolution depending on the chemical composition of the streamwater. 

Inorganic carbon that is dissolved within the stream can undergo evasion and be emitted to 

the atmosphere. Likewise atmospheric carbon can invade the stream channel and become 

dissolved inorganic carbon. The organic portion of the inflow can be assimilated by 

macrophytes and aquatic algae to be used in production and carbon generation or it can go 

through the process of bacterial decomposition which will convert the organic carbon into 

inorganic carbon. The surface fine grain laminae (SFGL) is the microbially-active 

boundary between streamwater and deep, legacy sediments. The SFGL is made up of the 

top layer of recently deposited sediment (up to 1 cm), heterotrophic bacteria, autotrophic 

algae, fungi, and macrophytes (Droppo and Stone, 1994; Droppo and Amos 2001). 

Microbial activity within the SFGL is promoted by the biofilm development of 

extracellular polymeric substances which increase stabilization and shear resistance of the 

SFGL (Decho, 1990). The importance of the SFGL with respect to karst is manifested in 

the ability of heterotrophic bacteria to breakdown temporarily-trapped sediment within the 

karst conduit. There is a lack of research that investigates the level of activity of the SFGL 

within fluviokarst watersheds.  

Dissolved and particulate organic carbon make up 40% of the total flux of carbon 

in rivers around the world with the inorganic carbon phase dominating flux (Schlesinger 
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and Melack, 1981; Meybeck, 1982). Of the organic portion, the dissolved phase typically 

dominates organic carbon exports (Meybeck, 1982; Sharma and Rai, 2004; Aldrian et al., 

2008; Zhang et al., 2009; Alvarez-Cobelas et al., 2010) but in some systems the majority 

of organic carbon exports is in the particulate phase (Howarth et al., 1991; Abril et al., 

2000; Worrall et al., 2003; Carey et al., 2005) depending on watershed and stream 

characteristics. Coarse sized organic matter is often the largest contributor of particulate 

carbon to the stream system (Wallace et al., 1995; Chadwick et al., 2010). In the Wallace 

et al. (1995) study, CPOM represented over 86% of the organic inputs to the system, but 

less than 4% of total organic matter export indicating the ability of in-stream processes to 

breakdown coarse organic matter into fine and dissolved constituents. Likewise, in an 8th-

order stream, FPOM constituted 75 – 98% of the exported organic matter (Minshall et al., 

1992). 

2.3.1 Source 

Particulate organic matter serves as an important energy source for decomposers, a 

nutrient source for bacteria, and provides physical and biological diversity to the stream 

(Ward, 1986; Crenshaw et al., 2002; Moore et al., 2004; Aldrige et al., 2009). Separating 

the source of particulate organic carbon is vital because organic rich sources are more 

reactive and can be degraded more easily than recalcitrant carbon derived from 

sedimentary rocks (Ittekkot et al., 1986; Depetris and Kempe, 1993; Stallard, 1998; Gomez 

et al., 2003).  Terrestrial-derived sediment organic carbon originates within surface soils 

and bank sediments and is transported down gradient during hydrologic events following 

the physical conservation laws of sediment transport. Soil organic matter (2500 Pg) is the 

third largest pool of carbon on earth and contains 3.3 times the carbon in the atmospheric 



www.manaraa.com

 

21 
 

pool (760 Pg) and 4.5 times the carbon in the biotic pool (560 Pg) (Lal, 2004).  FPOM can 

be derived from processing of leaf and litter inputs, woody debris, riparian soil particles, 

and flocculated dissolved organic matter, and autochthonous plant production. Terrestrial 

carbon uptake primarily occurs via photosynthesis during plant growth. Organic content of 

terrestrial sources can vary depending on depth and fertility of the eroded soil profile and 

vegetation type (Jobbágy and Jackson, 2000). Streambank carbon sources typically have a 

more depleted carbon content due to pre-erosion of upper carbon-rich sediment.  

The source of POC to low-order, headwater streams is dominated by soil carbon 

origin, whereas POC in higher order rivers is primarily associated with algal carbon 

resulting from phytoplankton production (Masiello and Druffel, 2001; Gomez et al., 2003; 

Hélie and Hillaire-Marcel, 2006; Gao et al., 2007; Ford and Fox, 2012).  In an urban stream 

in northwestern Oregon, terrestrial-derived soil and leaf litter were the main sources of 

organic matter which is consistent with the large inputs of riparian litterfall, bank erosion, 

and mass wasting (Goldman et al., 2014; Keith et al., 2014; Sobiesczczyk et al., 2014).  

2.3.2 Generation 

Organic biofilms are pronounced in lowland watersheds where deposition of fine 

sediments allow for microbial communities to develop (Walling et al., 2006). 

Allochthonous organic material delivered from upstream can be deposited and enriched by 

in-stream producers. Low-order streams are characterized by fast velocities and relatively 

low water residence times. As a result, autochthonous benthic production is favored over 

phytoplankton production that is more commonly found in rivers with lower gradients 

(Naiman et al., 2001; Allan and Castillo, 2007).   
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The most common type of primary producers found in headwater and low-order 

streams are periphyton (e.g., benthic algae, bacteria, and associated organic material). 

Periphyton growth occurs on any benthic surface receiving light such as stones (epilithon), 

sediment (epipelon), and even on other plants (epiphyton) (Allan and Castillo, 2007). 

Periphyton communities are attached to surfaces by a mucilaginous secretion that resists 

the shear force enacted by water and enables production and growth (Biggs et al., 1998; 

Dodds and Biggs, 2002). The growth of macrophyte communities also displays a feedback 

to water flow in small lowland streams by modifying velocity gradients and turbulence 

(Sand-Jensen and Pedersen, 1999). As algal material ages and experiences limited nutrient 

or sun exposure it can be eroded and delivered downstream as part of the detrital carbon 

pool (Naiman et al., 2001).  

2.3.3 Decomposition  

Heterotrophic decomposition is the biological process by which carbon is converted 

from an organic state into an inorganic state. During the decomposition process carbon 

dioxide is released as well as energy, water, and plant nutrients (i.e. mineralization). The 

rate of decomposition is mainly a function of the type of soil organism, the physical 

environment, and the quality of organic matter (Brussaard, 1994). In fluvial systems, leaf 

litter and coarse algae are labile carbon sources for macroinvertebrate and heterotrophic 

communities with faster decomposition rates than that of soil organic carbon (Short et al., 

1980; Minshall et al., 1983; Sinsabaugh et al., 1994; Webster et al., 1999; Alvarez and 

Guerrero, 2000; Jackson and Vollaire, 2007; Rier et al., 2007; Yoshimura et al., 2008). FPOM 

pools are considered more recalcitrant than CPOM pools due to utilization of the glucose 

components of CPOM during breakdown to FPOM (Yoshimura et al., 2008).  Rowe et al., 
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(1996) showed a connection between water chemistry and decomposition rates of litter in 

a karstified watershed due to the high influence of the underlying limestone bedrock on 

buffering acidic deposition due to high pH levels. Modeling the effects of the transport-

limited, phreatic karst conduit on carbon decomposition and re-mobilization is an area that 

requires further investigation.  

2.4 Sediment Transport Studies in Karst 

While recent research works towards an understanding of sediments in karst 

environments, much more study is needed to provide a conceptual model of fluvial 

sediment functioning in these systems (White, 2002; Bai et al., 2013). Sediment transported 

to phreatic conduits occurs during stormflow when rainfall activated surface water 

tributaries carry high sediment loads and provide quickflow via swallets to the subterranean 

karst.  The fluid energy threshold of the phreatic conduits offers the potential to trap pirated 

sediment through deposition.  Hydrologic events resulting in increased turbidity in karst 

systems are characterized as either primary or secondary (Lacroix et al., 2000; Pronk et al., 

2006). A primary turbidity peak occurs synchronously with event peaks, but secondary 

turbidity peaks are delayed appearing days (or weeks) after the initial peak. The secondary 

peaks are a result of delayed water that has infiltrated through the karst fracture and 

macropore network. Pronk et al. (2008) also found two turbidity peaks where one coincides 

with increasing flow rate and remobilization of the conduit bed and the other matches the 

particle transfer of sediment from the soil. The two turbidity peaks can be investigated 

using particle size distributions and, it has been shown that the second peak has a relative 

increase in finer particles.  
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Research in the transport of fine sediments in karst has focused upon the ability of 

karst networks to convey sediment under various ground saturation and moisture 

conditions (Herman et al., 2008), entrain and transport sediment by intensity of flows 

(Dogwiler and Wicks, 2004), store and discharge sediment in watersheds with changing 

land use (Hart and Schurger, 2005), and transport contaminants based on organic carbon 

content and specific surface area (Mahler et al., 1999). Dogwiler and Wicks (2004) found 

that baseflow was not enough to mobilize sediment and that the median diameter particles 

began to mobilize at 50% less than bankfull. During bankfull discharge conditions, 50-85% 

of the substrate can be transported. The sediment size (>1 cm) used in the Dogwiler and 

Wicks research was relatively large compared to that of this study. The recurrence interval 

for a bed-reforming event was every 2.4 months as viewed from a karst window.  

Investigation of bed changes in phreatic conduits has been lacking due to the high costs, 

heavy field work and instrumentation, and time required. This study will look at how the 

SFGL changes in a perpetually submerged karst conduit.  

2.5 Sediment Organic Carbon Studies in Karst 

Bacteria and other microbes in subsurface karst environments rely primarily on 

transported sediment organic carbon for their energy (Danovaro et al. 2001; Humphreys, 

2006).  The lack of any sunlight in these areas means no primary production is possible 

and carbon can only be decomposed and not generated. The microorganism food cycle is 

largely driven by the percolation of primarily-produced POC or DOC which makes its way 

downward through the cracks, fractures, and matrix of the aquifer (Chapelle, 2001).  Some 

karst systems can produce energy from within the karst basin via chemoautotrophs that fix 

inorganic carbon by using hydrogen sulfide as an energy source (Sarbu et al., 1996). 
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However, the large majority of karst systems do not have a method of carbon production 

(Simon et al., 2007). 

Simon and Benfield (2001) found that most coarse particulate organic matter in 

caves is broken down by physical or biological action in as little as tens of meters.  The 

SFGL layer of the cave bed has also been found to be an important food and organic carbon 

source in cave streams due to the existence of microbial films and bacterial communities 

(Simon et al., 2003; Farnleitner et al., 2005). Particulate organic carbon and dissolved 

organic carbon can enter the subsurface karst environment either by point sources (e.g., 

swallets) or by distributed flow (e.g., epikarst). POC is effectively filtered by soil and 

bedrock so it primarily enters through sinking streams and large openings (Gibert, 1986).  

Figure 2-5 conceptualizes some of the pathways and transformations that organic 

carbon can undergo while in a fluviokarst watershed. The carbon is initially generated by 

primary production in agricultural fields and by urban soils easily susceptible to erosion. 

Once the SOC is delivered to the primary surface channel there is the possibility that the 

SOC will be pirated from the surface to the subsurface via swallets. Due to the decreased 

sediment transport capacity of the subsurface conduit a net deposition occurs which allows 

heterotrophic bacteria to consume the fresh, labile organic carbon. The depleted organic 

carbon can then be re-suspended and brought back to the surface either by estavelles (karst 

features that can act as sources or sinks to the subsurface) or springs. Few studies have 

investigated the effect of upwelling on sediment and carbon estimates in fluviokarst 

watersheds. 
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Given the considerable global extent of karst topography, its role on potentially 

modifying the fate and transport of sediment organic carbon within the fluvial system is of 

interest.  Specifically, the commonly reported phreatic nature of many karst conduits and 

drainages (Atkinson, 1977; Bonacci and Magdanlenic 1993; Fleury et al., 2007; 

Bakalowicz et al., 2008; Fleury et al., 2013) offer the potential to temporarily trap 

terrestrial-derived sediment organic carbon in the subterranean environment. 

2.6 Water, Sediment, and SOC Source, Fate, and Transport in Karst 

2.6.1 Flow and Storage of Water in Karst 

The conceptual model for karst hydrology has experienced tremendous 

development and change over the past 50 years.  Early conceptual models focused on the 

variety of geologic settings and how they influence groundwater flow patterns in karst 

(Shuster and White, 1971). Smart and Hobbs (1986) and Ray et al. (1994) also added the 

components of recharge and storage to the karst aquifer classification scheme with the latter 

determining combined risk factors for groundwater sensitivity in Kentucky. More recent 

work has focused on conceptualizing the role of the epikarst to the overall karst system 

(Klimchouk, 2000; Aquilina et al. 2006). There exists three basic conceptual models: the 

physically-based models that require a hydrological basin grid and deep understanding of 

the system, empirical models (black-box models) that do not require info on structure or 

hydrodynamic parameters, and reservoir models that are based on simple relationships such 

as the linear law (Tritz et al., 2011). However as researchers (Jeannin, 2001; Jukić and 

Denić-Jukić, 2009) have shown, many karst systems have flow and sediment processes that 

are strongly non-linear.  
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Ashton (1966) was one of the first to suggest a method by which storage in a 

subsurface conduit that feeds a spring can be estimated. The method described by Ashton 

uses the natural flood pulses within the conduit-spring system as a tracer. Within a conduit, 

the flood pulse of the contributing recharge is felt almost instantly since the conduit water 

is being displaced, however, the flood water takes a finite time until it can reach the spring. 

Typically the flood water reaching the spring can be noticed by a decrease in the hardness 

of the spring water since the recharge has not had sufficient time to interact and exchange 

with the underground rock and soil formations. 

Another method for estimating the storage within a karst aquifer that is drained by 

a phreatic conduit is through the use of a residence time for tracer injections. A mean 

residence time is calculated using the method of moments from the integral of the tracer 

concentrations and spring discharges over the time period of observation. Multiplying the 

mean tracer residence time by the spring discharge yields a conduit volume (Sauter, 1992; 

Field and Nash, 1997). This conduit volume can then be used to estimate average cross-

sectional area for the cave by dividing the volume by the sinuous length. There are also 

several different methods of quantifying and parameterizing the discharge and other 

properties of the system. Another method for calculating discharge is through the use of a 

Flo-Mate® digital current meter and top-setting rods (Reed et al., 2010). 

2.6.2 Dye Tracing 

Dye tracing can be both quantitative and qualitative. Qualitative dye tracing gives 

insight into subsurface flow paths and source-sink connectivity. Dye tracing can be 

particularly helpful because of the inability of researchers to explore most karst 

environments of interest. Karst hydrogeologic dye tracing has been performed for over 100 
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years (Matson and Palmer, 1909; White, 2002). Dye tracing is performed by injecting a 

substance into a known inflow and then monitoring the recovery of the substance at several 

suspected outflows. Fluorescent dyes have become the primary method of dye tracing due 

to their ease of use and cost (Smart and Laidlaw, 1977). Underground flow maps which 

aide in contaminant tracking can be created by mapping the connectivity of various karst 

sinks and springs (Benischke et al., 2007).  

The other form of dye tracing is quantitative dye tracing which is used to estimate 

spring or conduit discharge. A dye or other substance is injected at an inlet and the flow 

rate and concentration of that substance is recorded. The concentration of the substance is 

then monitored at a second location and the mass conservation principle is applied to find 

the discharge at the second point. Researchers in Kentucky developed travel time maps to 

estimate how long it would take for a contaminant to reach drinking water sources 

depending on the distance of the contamination spill or leak (Paylor and Currens, 2004). 

More advanced dye tracing techniques can estimate the dispersivity, retardation and 

degradation, and conduit-matrix interactions in karst aquifers (Massei et al., 2006; Geyer 

et al., 2007; Goldscheider et al., 2008). By looking at the width of tracer breakthrough 

curves and fluid velocity, researchers were able to determine that dispersion is caused by 

small scale turbulent eddies and that retardation is a consequence of changes in conduit 

geometry (Hauns et al., 2001). 

2.6.3 Mapping of Karst Features  

Surface karst features typically have to be identified through field surveying 

although more recently geographic information system (GIS) tools have incorporated 

analysis tools that aid in identifying features based on topographic maps and other high 
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quality aerial photography. GIS tools allow users to identify distribution of sinkholes and 

other karst features (Doerfliger et al., 1999; Bruno et al., 2008; Anchuela et al., 2013).  

2.6.4 Laboratory Studies  

Dye tracing gives some insight into the interconnectivity of karst features, but as a 

result of the extreme complexity of karst coupled with the reality that most karst features 

cannot be navigated, fundamental processes in karst environments will have to be 

simulated in scaled laboratory experiments. Some work has been done in laboratory-scale 

branch models (Peterson, 2002) and colonization by aerobic bacteria in karst, which can 

affect organic carbon (Personné et al., 2004); however, scale karst laboratory experiments 

are a very untouched aspect in karst knowledge.  

2.6.5 Hydrograph Separation 

The application of hydrograph separation to karst aquifers is a well-recognized 

method for gaining insight into the functioning of a karst aquifer by using as few 

parameters as possible (Dreiss, 1989; Long, 2009). It is a method that has been used on 

surface streams to separate baseflow and stormflow. Using hydrograph separation, the 

effective precipitation is the input signal that creates a response at the outlet of the 

watershed in the form of discharge. The two distinct conceptual flow types in karst 

hydrology are quickflow and diffuse flow. Adding additional data such as tracer and runoff 

data allows for creating a more complete picture of karst hydrodynamics (Weiler et al., 

2003). Concepts of porous media aquifers and hydrograph separation such as 

transmissivity and specific yield have also been applied to karst aquifers (Baedke and 

Krothe, 2001) although due to the heterogeneity of karst it is difficult to identify spatial 

variability of these parameters.  
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2.6.6 Isotope Analysis  

Many researchers have used tracers in karst ranging from finding flow paths to 

fingerprinting sediment to characterizing surface water and groundwater interactions (Lee 

and Krothe, 2001; Einsiedl, 2005).  Sediment samples go through extensive isotope 

analysis and then are discretized based on the signatures of samples from different sources. 

Isotope analysis has been an extremely useful tool for the discretization of sediment and 

rainwater sources both in surface channels as well as karst springs (Gibert, 1986; Perrin et 

al., 2003). Flow rate through a spring has been previously calculated using environmental 

isotope tracers such as tritium (3H) and stable isotopes (18O and/or 2H) (Maloszewski et al., 

2002).  Emblanch et al. (2003) found contrasting information from using the 18O and 13C 

tracers and concluded that the 13C of dissolved inorganic carbon is better suited to find the 

total contribution of the unsaturated zone whereas the 18O signature gives information as 

to age of the water being discharged.  

2.6.7 Numerical Modeling  

Numerical modeling is an important tool for investigating water resources in porous 

media aquifers, however numerical modeling has not had the same level of success when 

it comes to extremely heterogeneous aquifers such as karst; the application of such models 

to karst would not accurately simulate the direction or rate of water flow on local scales 

(Scanlon et al., 2003). Karst aquifers behave as coupled porous-media/pipe-flow systems 

and pipe-flow models can be successfully applied to karst (Thrailkill, 1974; Jeannin, 2001). 

Pipe-flow models and storm drainage models are widely used in civil engineering, 

especially in areas such as storm water management (Schlütter, 1999; Lam and Horvath, 

2000; Campbell and Sullivan, 2002). However, the application of these programs in karst 

can run into problems because of the unmapped areas of the conduit.  
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Although making assumptions is essentially a requirement for many karst systems, 

changes of length and diameter of karst conduits can lead to statistically significant 

differences when using models (Peterson and Wicks, 2006). Researchers have created a 

fully integrated discrete-continuum modeling for coupling conduit flow, channel flow, 

overland flow, and matrix flow in karst systems (de Rooij et al., 2013), but they have only 

focused on flow characteristics and have not delved into the surface-subsurface interaction, 

suspension, and deposition of sediments in karst watersheds. Researchers have also shown 

that in many karst systems flow and sediment processes are strongly non-linear and must 

be modeled with more sophisticated techniques (Herman et al., 2008; Jukić and Denić-

Jukić, 2009).  
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Table 2-1: Table of Discharges and Catchment Areas for Karst Springs 

Spring Q min 
(m³ s-1) 

Q max 
(m³ s-1) 

Q mean 
(m³ s-1) 

Area 
(km²) 

Q mean 
/Area Source 

Dumanli, 
Turkey 25 >100 50 2800 0.02 

Goldscheider 
and Drew, 

2007 

Matali, Papua 
New Guinea 20 >240 90 350 0.26 

Vaucluse, 
France 4.5 200 29 2100 0.01 

Tisu, China 4 545 38 1004 0.04 
Timavo, Italy 9 130 17.4 980 0.02 
Trebisnjica, 
Herzegovina 2 >300 80 1144 0.07 

Ombla, Croatia 2.3 154 33.8 600 0.06 
Ljubljanica, 
Slovenia 4.3 132 39 1100 0.04 

Buna, 
Herzegovina 2.5 123 23.7 112 0.21 

Bunica, 
Herzegovina 0.7 207 20.2 512 0.04 

Chingshui, 
China 4 390 33 1040 0.03 

Silver, U.S. 15 36.5 23.3 1900 0.01 
Frio, Mexico 6 515 28 >1000 0.03 
Coy, Mexico 13 200 24 >1000 0.02 
Sinjac (Piva), 
Yugoslavia 1.4 154 21 505 0.04 

Grab-Ruda, 
Croatia 2 105 20 283 0.07 

Rijecina, 
Croatia 1.2 80 12.4 330 0.04 

Karuc, 
Yugoslavia 1.9 >50 7 120 0.06 

Gregava, 
Herzegovina 0.5 59 17.5 396 0.04 

Waikoropupu, 
New Zealand 5.3 21 15 450 0.03 

Maligne, 
Canada 1 45 13.5 730 0.02 

Perucac, 
Yugoslavia 0.4 9 1.2 67 0.02 
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Table 2-1 Continued 

Spring Q min 
(m³ s-1) 

Q max 
(m³ s-1) 

Q mean 
(m³ s-1) 

Area 
(km²) 

Q mean 
/Area Source 

Mlava, 
Yugoslavia 0.7 17 1.7 120 0.01 

Goldscheider 
and Drew, 

2007 
Jadro, Croatia 3.9 70.1 10.0 250 0.04 Bonacci, 

2001 Zrnovnica, 
Croatia 0.4 16.7 1.9 50 0.04 

Areuse, 
Switzerland <1 >30 4.6 128 0.04 Kiraly, 1998 

Anjar-
Chamsine, 
Lebanon 

- - 2.6 250 0.01 
Bakalowicz, 

2004 Zarka, Syria - - 13 2000 0.01 
Afka, Lebanon - - 4 150 0.03 
Maramec 
Spring, MO, 
USA 

- 22 4.4 795 0.01 Wicks and 
Hokes, 2000 

Buffalo Spring, 
KY, USA - - 0.5 25 0.02 Meiman and 

Ryan, 1999 
Engen, 
Germany - - 8.5 36 0.24 Goldscheider, 

2005 

Sv Ivan Spring, 
Croatia 0.1 2.2 0.9 74 0.01 

Bonacci and 
Magdalenic, 

1993 

Jinci, China 0 2.05 1.1 2430 <0.01 Guo et al., 
2005 

Areuse Spring, 
Malm, 
Switzerland 

0.3 51 4.9 130 0.04 
Eisenlohr et 

al., 1997 Serriere Spring, 
Malm, 
Switzerland 

0.2 11 2.5 88 0.03 

Schneealpe 
Karst, Vienna, 
Austria 

0.1 2.3 0.5 23 0.02 Maloszewski 
et al., 2002 

Milandre, 
Switzerland 0 1.6 0.1 13 0.01 Fleury et al., 

2007 
Barton Springs, 
Texas, USA - - 1.6 330 <0.01 Scanlon et 

al., 2003 
Royal Spring, 
KY, USA 0 5.0 0.6 65 0.01 This Study 
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Figure 2-1: Common Karst Topographical Features (KGS, 2002) 
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Figure 2-2: Conceptual Model of Surface-Subsurface Hydraulics Using an Observed Hydrograph 

35 
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Figure 2-3: The Fluvial System (Miller, 1990) 
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Figure 2-4: In-stream sediment carbon physical and biogeochemical processes including 

advective flux in and out of the stream reach, dissolution, precipitation, erosion, 

deposition, invasion, evasion, assimilation, sloughing, decomposition, aggregation, and 

bacterial respiration. (Ford and Fox, 2012) 
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Figure 2-5: Conceptual Model of SOC Transport in Fluviokarst 
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Chapter 3 Study Site 

The Cane Run Watershed (96 km2) is a mixed-use, fluviokarst watershed located 

in the Bluegrass Region of central Kentucky in close proximity to the University of 

Kentucky and the city of Lexington.  The Cane Run Creek watershed is a coupled surface 

water and karst drainage network (Figure 3-1).  Urban and agriculturally impacted 

tributaries to Cane Run Creek drain the uplands (see “Urban Trib” and “Ag Trib” Figure 

3-1). The underlying karst groundwater basin, termed “Royal Spring”, surfaces in 

Georgetown, Kentucky where it serves as a drinking water source for the city.  Royal 

Spring has the largest base flow discharge of any spring in the Inner Bluegrass (Currens et 

al., 2015). A primary conduit conveys water through the karst aquifer and is monitored at 

the “Groundwater Station” (Figure 3-1). For this research study, the investigated portion 

of the Cane Run Watershed is the area upstream of the intersection between the main stem 

of the Cane Run Creek and the Royal Spring Groundwater Basin boundary (labeled as 

“Surface Outflow” in Figure 3-1). This portion of the coupled surface-subsurface network 

has a drainage area of 58 km2. The investigated portion is a mixed-use watershed that is 

40.5% urban and 59.5% agricultural in use (Figure 3-2).   

The coupled surface sub-surface watershed was chosen as a testbed for 

investigating fate and transport of sediment organic carbon in fluviokarst watersheds due 

to (i) the mature topographical nature of karst in the Bluegrass Region characterized by 

high flow and contaminant transport rates; (ii) the high connectivity between the surface 

stream channel and subsurface karst conduits; (iii) the extensive database of knowledge 

and data collected by previous researchers (e.g., the KGS and the University of Kentucky 

College of Agriculture); (iv) the karst groundwater emerging at the primary springhead is 
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used as a municipal water source by the City of Georgetown; and (v) on-going data 

collection and research efforts such as nutrient sampling and physical modeling being 

performed in the watershed.  

3.1 Physiogeographic Setting 

The topography of the Cane Run Watershed is similar to that of other areas in the 

Bluegrass Region which are characterized by a temperate climate, gently undulating hills, 

and lowlands. The headwaters of the stream begin near downtown Lexington, Kentucky. 

The Inner Bluegrass Region is known for its horses and many horse farms are located 

within the watershed. One such horse facility is the Kentucky Horse Park which is located 

near the point where the surface stream and subsurface conduit diverge in their flow paths 

(labeled as Groundwater Station on 3-1). The stream gradient of Cane Run is mild and 

averages 2.34 m per km over the course of the main channel. The region is well vegetated 

with grass and trees; riparian zones exist around the stream throughout most of the 

watershed. The soil in the watershed ranges from fairly level to strongly sloping silt loam 

and silty clay loam (USDA, 1993). The area is comprised of deep, well-drained series of 

soils (e.g., Maury, McAfee, and Lowell) that are formed from weathered phosphatic 

limestone (USDA, 1993).  These soil series are characterized by moderate low to 

moderately rapid permeability (USDA, 1993).  

Tributaries draining smaller, less-karstified sub-catchments provide recharge to the 

main stem of Cane Run Creek. Urban tributaries are largely rainfall activated and 

agricultural tributaries are intermittent to perennial. The subsurface conduit drains the 

watershed year round, while the main stem of Cane Run Creek tends to contain no flow 

over nine months of the year during low and moderate hydrologic events.  Connectivity 
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between Cane Run Creek and the karst subsurface occurs via a series of swallets and 

estavelles. Fifty seven karst holes have been mapped in and around the stream corridor 

(Paylor and Currens, 2004). The portion of the Cane Run Creek downstream of the Surface 

Outflow maintains flow at the surface nearly year round. Both the subsurface conduit and 

Cane Run Creek are active in the winter when soil moisture conditions are high and rainfall 

activity is prolonged.   

3.2 Geology 

Over 50 percent of Kentucky is underlain by rock that could eventually develop 

karst terrain (Currens and Paylor, 2009). The high percentage of limestone in Kentucky 

has also allowed for the generation of many different kinds of karstic features ranging from 

small fractures to the world’s longest cave, Mammoth Cave. The underlying bedrock in 

the Cane Run Creek Watershed is composed of Lexington Limestone of the Middle 

Ordovician period (Cressman and Peterson, 1986).  The Lexington Limestone member is 

approximately 95 meters thick.  The strata creating the subsurface aquifer is highly 

complex with micrograined argillaceous carbonate facies interbedded primarily within 

limestone (Cressman, 1967). The rock structures in the region are a result of a tectonic 

stress-field which initiated a pattern of en echelon minor faults and joints directing from 

the southeast towards the northwest (Drahovzal et al., 1992; Drahovzal and Noger, 1995). 

Karst conduits have formed along these structures and many of these conduits cross 

through catchment boundaries created by surface geomorphology (Taylor, 1992).  Near the 

Groundwater Station, a minor syncline is created with an azimuth from southeast to 

northwest, and a minor normal fault trending northwest is also located near this area 

(Cressman, 1967).  
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The fast response porosity of the Cane Run karst system consists of a series of 

vertical shafts and anastomosis conduits that converge to a main subsurface conduit that 

transports and stores water. Dissolution of near-surface limestone has formed the existing 

karst holes and sinking features within the stream channel that pirate flow during low to 

moderate hydrologic conditions. The primary conduit is believed to be formed along the 

normal fault and generally follows the path of the surface stream until divergence near the 

Groundwater Station. The conduit is phreatic and the primary spring head is approximately 

7 meters above the conduit low point.  

3.3 Human Disturbances 

The Royal Spring karst aquifer has been used as a water source since its discovery 

in the late 18th century. The water recovered from the spring and aquifer has been used for 

distilleries, grist mills, and as a raw municipal water supply for the City of Georgetown. 

More recently, the aquifer has been pumped for agricultural purposes such as hydrating 

cattle and horses and irrigating crops.  During dry periods, the primary springhead runs dry 

due to over-pumping of aquifer water resulting in the lowering of the groundwater table.  

The urbanization of Lexington, the second largest city in Kentucky, has introduced 

many potential contamination sources (e.g., lawn fertilizer, septic tanks, chemical waste) 

into the watershed. In 2006, the U.S. Environmental Protection Agency filed a lawsuit 

against the Lexington-Fayette Urban County Government for not complying with the urban 

stormwater runoff regulations of the Clean Water Act (Martin, 2009). The historic increase 

in impervious areas in the headwaters of the watershed reduces baseflow and, coupled with 

flow pirating from karst features, hinders aquatic habitats. Transportation routes such as I-

75 and I-64 cut through the center of the coupled drainage network and are prominent 
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sources of contamination. Anthropogenic agricultural and urban practices cause harmful 

algal blooms, transport of deleterious metals, and proliferation of fine sediment, which in 

turn severely impedes the ability of the Georgetown water treatment plant to safely provide 

drinking water to the local population.   

3.4 Historic Study of System 

Pre-knowledge of the Cane Run system was provided through much study of the 

system primarily by the Kentucky Geological Survey (KGS) over the past four decades 

(Cressman, 1973; Thrailkill, 1985; Taylor, 1992, Clepper, 2011) and more recently in peer 

reviewed journal papers (Jewell et al., 2004; Palanisamy and Workman, 2014; Sawyer et 

al., 2015) . The groundwater basin of Royal Spring was first mapped in the 1980’s using 

dye traces injected into swallets and then monitored at different locations in order to map 

connectivity of karst features (Spangler et al., 1982; Taylor, 1992). Paylor and Currens 

(2004) used quantitative dye tracing techniques in the basin to determine travel times for a 

variety of hydrologic conditions. Qualitative dye traces were also performed to check for 

connectivity of different swallets to the main conduit. A more refined groundwater basin 

was created using the accumulation of many tracer studies (Figure 3-3).   

Thrailkill and Gouzie (1984) estimated linear velocity, channel geometry, and 

conveyance in the groundwater basin using travel time of dye slugs and discharges obtained 

by dye dilution. Thrailkill and Gouzie also believed that some flow was bypassing the 

primary spring through overflow routes. In later research, Thrailkill et al. (1991) concluded 

that the subsurface conduit had a shallow flow of a few centimeters that should be 

considered an ‘equivalent depth’ and that the significant flow in the aquifer is in a thin, 

high porosity zone beneath the water table.  
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Tripathi (2009) employed electrical resistivity and self-potential techniques at 

multiple locations within the Royal Spring karst basin in order to locate the main trunk 

conduit that fed into the primary springhead. In 2010, the KGS measured electrical 

resistivity profiles over eight kilometers of the surface using a dipole-dipole electrode 

configuration method. This method works by using the difference in the low resistivity of 

water in the conduit to the high resistivity of water in the fracture matrix component of the 

limestone to map potential surfaces and high conveyance areas.  Potentiometric surfaces 

were also plotted as more and more monitoring wells were installed in the basin. In total, 

the KGS drilled 44 wells in search of the primary conduit using the electrical resistivity 

profiles to determine drilling location. Four wells drilled by the KGS either directly 

intersected the main conduit or are hydraulically connected to the conduit (identified by 

“Groundwater Station” in Figure 3-1). These wells were instrumented with water quality 

sondes, pressure transducers, an automatic sampler, and a velocimeter.  

Down-hole video imaging of the system was performed by the KGS in order to 

obtain more information about conduit geometry. Doppler sonar instruments were used to 

estimate distance to the wall from one of the wells that directly intersected the conduit. 

This instrument was also used to verify readings by the Marsh-McBirney® 201-D 

velocimeter. Early estimates by both visual inspection, quantitative dye traces, and Doppler 

sonar results have narrowed down the general shape of the conduit which represents a 

shallow, wide rectangular channel with an averaged measured height of 0.9 m and an 

average width of 6.2 m. 

 In 1998, the Cane Run Watershed was identified as an impaired waterway by the 

Kentucky Division of Water.  The University of Kentucky’s College of Agriculture, Food, 
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and Environment developed a watershed based plan in order to remediate deficiencies 

caused by point and nonpoint source pollution (UKAg, 2011).  Conclusions of the research 

were that the overall watershed is in bad ecological health and that major problems are 

bacteria, nutrient pollutants, and stream bank erosion.  The single biggest problem 

identified in the watershed was the coupling of the surface and subsurface drainage network 

which inhibited aquatic species in streams due to flow pirating by the karst geomorphology.  

3.5 Water Processes, Source, and Mechanics 

Streams in the Cane Run Creek are primarily activated by rainfall events. This 

results in the primary channel of the watershed running dry for a majority of the year when 

prolonged rainfall is absent. Runoff in the headwaters is poorly infiltrated due to the high 

percentage of impervious areas and is delivered to the stream channel soon after rainfall is 

initiated. The majority of the downstream portion of the watershed is agriculturally 

impacted and provides more sustained flow, during events, to the main channel through 

tributaries and surface runoff.   

During hydrologic events, runoff enters the streambed and is captured by the many 

swallets and estavelles located along the stream profile. Streamflow is maintained on the 

surface only after the subsurface karst aquifer is filled. This occurs during moderate to high 

hydrologic activity that exceed karst aquifer capacity. Once the karst aquifer is at 

“capacity”, streamflow will overtop the karst features in the streambed and allow for 

downstream water conveyance on the surface. Streamflow continues to be exchanged 

between the surfaces and subsurface, but in a more complex manner which is governed by 

the energy difference between different swallets along the conduit.  
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The flow in the subsurface portion of the Cane Run Creek Watershed is primarily 

through a wide, rectangular conduit 20 meters below the ground surface. There are several 

anastomosing conduits that flank and interact with the main, central conduit.  The karst 

conduit is generally aligned with the surface channel of Cane Run Creek, however, the two 

flow paths eventually diverge with Cane Run Creek leading into the North Elkhorn and the 

Royal Spring conduit leading to Georgetown. 

3.6 Sediment Transport Sources and Processes 

Sediment in the watershed is derived from the various agricultural and urban land 

uses. In-stream sediment transport processes are heavily influenced by the short-lived 

hydrologic events and infrequent sustained streamflow. Sediment is delivered from the 

uplands, transported downstream, and stored in the watershed during active periods. The 

lack of erosion controls and sufficient runoff have negatively impacted stream bank 

stability leading to erosion of stream bank sediments.  Urbanization of the upstream portion 

of the watershed is believed to be a large source of sediment erosion and in-stream storage. 

Sediment is also introduced into the main stream corridor due to livestock and equine 

grazing in the cattle and horse farms in the watershed.  

As with the streamflow, the suspended sediment in the stream is also diverted and 

re-routed to the subsurface karst aquifer during low to moderate forms. This sediment is 

then deposited in the subsurface due to a decrease in the transport carrying capacity of the 

fluid. This decrease is a result of a downstream hydraulic control (i.e. the water surface at 

the primary springhead). Sediment deposited in the subsurface can be either re-introduced 

to the surface through estavelle action or carried down-gradient towards Royal Spring.  
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In addition to mapping flow connectivity, both point samples and continuous water 

quality data were collected from a monitoring well accessing the karst conduit. The 

monitoring well is adjacent an existing large farm well used to access the same karst water 

for irrigation. Fine sediment is well recognized to transport contaminants down-gradient in 

watersheds. The karst aquifer repeatedly has fecal coliform counts exceeding 10,000 c/100 

mL of water that are highly correlated with total suspended solids concentration of karst 

water (Currens et al., 2015). Such occurrences of high fecal and sediment loads in the karst 

were most frequent during or after storm events. Water and sediment transported within 

the karst conduit could potentially be unsafe although natural bacteria are known for 

breaking down contaminants given enough time.  

3.7 Carbon Mechanisms and Transport 

Carbon is introduced to the stream primarily through runoff carrying eroded soil 

from the banks and uplands as well as fine detrital material. Autotrophic carbon production 

is low in the watershed due to poor aquatic habitats resulting from the intermittent 

streamflow due to the karst hydro-geomorphology. Organic enrichment from urban runoff 

and storm sewers is also a concern along the entire length of the channel. Carbon-rich 

sediments from the surface have the potential to be diverted to the subsurface conduit 

where heterotrophic bacteria decomposition is pronounced. Depleted sediment then could 

resurface to the stream corridor, remain in storage, or be flushed out to the main spring. 

One unknown that will be investigated in this study is the transformation of carbon during 

temporary fate in the subterranean karst corridor.  
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Figure 3-1: Location Map of Cane Run Watershed and Royal Spring Basin 
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Figure 3-2: Cane Run Creek Land Use Map 
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Figure 3-3: Qualitative Dye Traces in Royal Spring (adapted from Lee, 2012) 
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Chapter 4 Methodology 

Modeling the sediment transport capabilities and carbon transformations in a 

coupled surface-subsurface karst drainage network was performed using a coupled model 

framework including hydrologic, hydraulic, and biological processes. The model addresses 

physical erosion and deposition in the conduit as well as decomposition of sediment 

organic carbon temporarily trapped in the subsurface. Figure 4-1 shows the modeling 

outline used in this study. The major inputs to the sediment transport model are the 

sediment fluxes pirated from surface stream tributaries, the flow rate in each cell of the 

conduit, and the hydraulic and hydrologic inputs for the surface and subsurface. Inputs to 

the sediment transport model were collected through field investigation and laboratory 

analysis. The major inputs to the carbon model were the contributions of different source 

carbon pools, litter and algae decomposition rates, and fixed percent algae in the sediment 

organic carbon. Carbon inputs were collected through isotopic and elemental lab analysis. 

Investigated hydraulic and biochemical parameters were adjusted to optimize model 

results. Other parameters such as critical shear stresses and decomposition rates were based 

off of results published in peer-reviewed literature. Calibration and validation was 

performed using statistics (e.g., Nash-Sutcliffe Efficiency) to evaluate model results 

against results obtained from measured data.  

4.1 Water Data 

4.1.1 Stream Gages 

Inputs and outputs to the Cane Run Creek and the associated karst drainage network 

were measured using continuous flow monitoring. Therefore, in-situ pressure transducers 

were installed at the Surface Outflow, Urban Trib, and Ag Trib locations (Figure 3-1) and 
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collected stage every 10 minutes. The two inflowing tributaries were representative of the 

urban and agriculture catchments that make up the Cane Run Creek Watershed, but did not 

have sinkholes upstream of the sampling site. Surface water outflow for the drainage area 

was measured at the location where surface water pathways and subsurface flow paths 

begin to diverge. Flow velocity measurements taken by the United States Geological 

Survey (USGS) at different stage heights were used to develop stage-discharge 

relationships.  

The two primary flow gages set up in the urban and agriculture streams were 

removed for periods of time for calibration and cleaning leaving gaps in the continuous 

data records that were filled using other operational gages as surrogates. The three gages 

used to fill in missing data for tributary inflow are the Cane Run Creek Surface Overflow 

Station (CRCK) which is located a few hundred meters from the Groundwater Station and 

is operated by the Kentucky Geological Survey; the Cane Run at Berea Road (USGS 

03288200) station which was decommissioned halfway through the investigation period in 

June 2012; and the Cane Run at Citation Boulevard (USGS 03288180) station which 

replaced the Berea Road station. Hydrologic relationships between the gages were created 

and are shown in Table 4-1 to optimize which surrogate gage would perform the best when 

data at the original stations were not available. The relationships between the gages 

performed as expected with sites closer spatially to one another acting as better proxies 

than those further away. 

4.1.2 Observation Wells 

Several observation wells were drilled within the watershed in order to monitor the 

piezometric head, subsurface flow, and sediment transport processes. The location of 
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where the wells were to be drilled was determined using surface geophysical techniques 

(Tripathi, 2009). Researchers applied an electrical resistivity technique (ER) to 972 m of 

the surface by measuring ER profiles using a SuperSting™ R8/IP instrument with dipole-

dipole electrode configuration at 2 – 3 m spacing. Self-potential (SP) measurements were 

taken along the ER lines by using one stationary reference electrode and another roving 

electrode. The ER technique used the difference in resistivity between water and limestone 

bedrock to locate conduits. The SP technique measures the natural electrical potential 

caused by the electrokinetic or streaming potential of fluid flow through subsurface media. 

Subsequent drilling of over 44 six inch diameter wells established the elevation of the 

conduit to be 20 m below the ground surface. Many of the original 44 wells entirely missed 

the conduit and some were instrumented with depth gages to monitor groundwater levels 

in the surrounding karst aquifer. Three wells directly intersected the conduit and one well 

just barely missed the wall of the conduit, but was believed to be in hydraulic 

communication with the conduit (i.e., head in the conduit is similar to that of the well). 

Telog® Water Level Recorders (model 2109) were placed in six of the wells and 

measured spatial variability of the piezometric surface. One of the wells directly 

intersecting the conduit was instrumented with a Marsh-McBirney® 201-D velocimeter to 

measure average conduit velocity. A YSI® 6920v2 turbidity probe was installed into one 

of the wells for continuous water quality and sediment monitoring and measures pH, 

temperature, conductivity, dissolved oxygen percentage, and turbidity. A Teledyne ISCO® 

6712 Water Sampler was used to collect suspended sediment samples every 30 minutes 

throughout hydrologic events as well as during baseflow. Afterwards, a Total Suspended 

Solids (TSS) analysis was performed to determine sediment concentration for each sample. 
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A relationship between turbidity readings and TSS concentrations was developed by taking 

many TSS samples and fitting them with the turbidity probe data (Figure 4-2).  

Flow through the subsurface conduit at the Groundwater Station was measured by 

a Marsh-McBirney® 201-D continuous velocity recording device. The Marsh-McBirney® 

201-D magnetic water flow-meter is a robust sonde that measures instantaneous velocity. 

The instrument has a relatively small profile which makes it less susceptible to being 

damaged by debris. If the instrument does become damaged it is relatively inexpensive to 

repair or replace. The velocimeter was placed at 8/10ths of the maximum height of the 

conduit to collect the depth average velocity within the conduit. The range of this 

instrument at the Groundwater Station was found to be between 0.01 and 0.48 m s-1. A 

Campbell Scientific® CR200 data logger was used to record the analog velocity signal at 

10 minute intervals starting in October 2011 and continuing to October 2013.  

Due to the abundance of data over the two year time period, there is a reliable 

estimation of the discharge within the conduit for much of the time period. However, the 

Marsh-McBirney® Velocimeter was in need of maintenance quite often and there are gaps 

of missing velocity data within the conduit. The velocimeter was impacted by lightning 

strikes, contact with debris, and animals chewing through the wiring. A spring gage (USGS 

03288110) was used as a surrogate during time periods when the conduit instrumentation 

was out of order. 

4.1.3 Dye Traces 

The Kentucky Geological Survey used quantitative dye tracing to estimate the 

instantaneous discharge and establish a stage-discharge relationship for the conduit. All 

dye traces were injected at a location known as “Eclipse Road karst window” located about 
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955 m upstream from the Groundwater Station, including sinuosity. Water was filled in a 

container and then the dye tracer was mixed with water which was later injected into the 

karst window. The concept of a dye trace is based on conservation of mass in that the dye 

injected at one location should be recoverable at another location along the path of the flow 

assuming the tracer is conservative (White, 2002) as  

𝐶𝐶𝐼𝐼
𝑄𝑄𝐼𝐼� = 𝐶𝐶𝑅𝑅

𝑄𝑄𝑅𝑅� ,                           (5) 

where, 𝐶𝐶𝐼𝐼 and 𝑄𝑄𝐼𝐼 are the initial concentration (mg L-1) and inflow rate at the Eclipse Road 

karst window (m3 s-1), respectively, 𝐶𝐶𝑅𝑅 (mg L-1) is the concentration of the recovered dye 

tracer, and 𝑄𝑄𝑅𝑅 is the unknown variable solved in the equation which represents the 

discharge (m3 s-1) at the location of dye recovery.  

Rhodamine WT and fluorescein were the two dye tracers injected into the karst 

window. These tracers are commonly used in karst environments due to low adsorptive 

tendency, strong fluorescence, chemical stability, and benign character in benthic 

environments (Smart and Laidlaw, 1977; Wilson et al., 1986). Downstream concentration 

of the tracers was measured by collecting water samples every 10 minutes using an ISCO® 

sampler. Tracer analysis was done with a Cary Eclipse Varian® fluorescence 

spectrophotometer.  The arrival time of the center of mass of the fluorescein was used to 

estimate the velocity of the discharge. The concentration of the Rhodamine WT was used 

to calculate the rate of the discharge. In turn, the cross-sectional area of the conduit was 

estimate by simply dividing the flow rate measured by the Rhodamine WT with the 

velocity measured by the Marsh-McBirney®.  This technique of dye tracing proved useful 
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to corroborate the readings and estimations of both velocity and cross-sectional area 

obtained from other methods. 

4.2 Sediment Data 

4.2.1 Total Suspended Solids Pumps and Samplers 

Sediment concentration measurements of water from the conduit and surface 

streams were measured using water samples collected with Teledyne ISCO® 6712 

automated pump samplers. Automated samplers were programmed to collect 500 mL 

samples at 30 or 60 minute intervals. Grab samples were also collected from the surface 

streams. Samples were returned to the lab and processed with Whatman filters which retain 

sediment larger than 0.45 microns. The Whatman filters were rinsed with de-ionized 

organic free water and dried in an oven at 105°C to remove all water prior to analysis 

(USEPA, 1999). The volume of water in the sample bottles was noted and the samples 

were run through the filters to retain the sediment. The filters were then dried again and 

weighed to find the sample mass.  

Due to the intense field and laboratory work required for collecting and analyzing 

TSS, it is not practically feasible to continuously sample using a pump sampler. One 

solution to monitoring suspended solids in the water column continuously is by using a 

turbidity probe. In this study we used several YSI® 6920v2 turbidity probes at the inlets 

and outlets to the drainage network. Turbidity is a measure of how much the suspended 

material in water decreases the passage of light through the water (McLusky, 1971). 

Sediment in the water column attenuates sunlight preventing it from penetrating deeper 

into the stream. A turbidity probe works by measuring the amount of transmitted light in 
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the water column. The amount of transmitted light decreases with increasing suspended 

solid concentrations. A surrogate relationship between TSS and turbidity was used to allow 

for low-cost and continuous sampling. Figure 4-2 shows the relationship between TSS and 

turbidity at the conduit Groundwater Station.  

During the two year investigation period, the turbidity probes would often be 

damaged by debris in large flow events, electrical short circuiting, and by animals chewing 

through the probe cables. The probes were also often removed for data collection, 

recalibration, and cleaning. To fill in the time periods where turbidity data were missing 

from the YSI® sondes, several relationships were developed between flow and total 

suspended solids for each site as 

𝐶𝐶𝑠𝑠𝑠𝑠 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 �𝑃𝑃𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖(1.3) + 𝑃𝑃𝑢𝑢𝑔𝑔(0.75)� [𝐸𝐸(1 − 𝑎𝑎−𝑢𝑢𝑄𝑄𝑖𝑖)] + 𝐷𝐷,                                (6) 

where, 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 is an integration coefficient, 𝑄𝑄𝑖𝑖 is the flow rate for the tributary (m3 s-1), 𝑃𝑃𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖 

and 𝑃𝑃𝑢𝑢𝑔𝑔 are the land area fraction for urban and agricultural areas, respectively, and 𝐸𝐸, 𝑎𝑎, 

and 𝐷𝐷 are empirical coefficients for curve fitting. These relationships allow for an estimate 

of the suspended solids when no other data were available and were developed from Russo 

and Fox (2012) and Coulter et al. (2004). The relationships between turbidity and flow are 

listed in Table 4-2.  

4.2.2 Sediment Flux  

The method used for estimating suspended-sediment discharge in this study is 

termed Einstein’s Approach (1950) which integrates the velocity and concentration profiles 

over the flow depth as 
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𝑞𝑞𝑠𝑠𝑠𝑠 = ∫ 𝐶𝐶𝐶𝐶 𝑑𝑑𝑑𝑑𝐷𝐷
𝑢𝑢 ,                (7) 

where, 𝑞𝑞𝑠𝑠𝑠𝑠 is sediment discharge per unit width (kg s-1m-1), 𝑎𝑎 is the lower limit where 

suspension begins (m), 𝐷𝐷 is the flow depth (m), 𝐶𝐶 is the sediment concentration (mg L-1), 

𝐶𝐶 is velocity (m s-1), and 𝑑𝑑 is in the direction perpendicular to the bed (m).   

 The concentration profiles of the surface streams and subsurface conduit were 

parameterized using a reference concentration, 𝐶𝐶𝑢𝑢, at the depth of the ISCO® sampler inlet. 

The concentration equation (Rouse, 1937) has the form 

𝐶𝐶
𝐶𝐶𝑎𝑎

= �𝐷𝐷−𝑧𝑧
𝑧𝑧
− 𝑢𝑢

𝐷𝐷−𝑢𝑢
�
𝑧𝑧∗

,                          (8) 

where, 𝑑𝑑∗ is the Rouse Number. Higher Rouse Numbers have an exponentially decaying 

sediment concentration profile heavily skewed towards the bed due to high particle sizes 

or low slopes whereas low Rouse Numbers approach a near-uniform concentration profile 

and are more typical for fine sediment. The Rouse Number is formulated as 

𝑑𝑑∗ = 𝑤𝑤𝑠𝑠
𝜅𝜅𝑈𝑈∗

,                 (9) 

where, 𝑤𝑤𝑠𝑠 is the settling velocity of the sediment (m s-1), 𝜅𝜅 is the von Karman constant 

(approximately 0.4 for clear fluids), and 𝑈𝑈∗ is the friction, or shear, velocity (m s-1) which, 

in open channel flow, is estimated (Chang, 1998 p. 41) as 

𝑈𝑈∗ = �𝑎𝑎𝑅𝑅𝑄𝑄,               (10) 
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where, 𝑎𝑎 is the acceleration due to gravity (m s-2), 𝑅𝑅 is the hydraulic radius (m), and 𝑄𝑄 is 

the energy slope (m m-1).  For pipes or conduits, the shear velocity is estimated (Allen et 

al., 2007) as 

𝑈𝑈∗ = �𝑓𝑓∙𝑈𝑈𝑎𝑎𝑎𝑎𝑎𝑎2

8
,               (11) 

where, 𝑓𝑓 is the Darcy friction factor, and 𝑈𝑈𝑢𝑢𝑣𝑣𝑔𝑔 is the average flow velocity (m s-1). 

 The velocity profile for surface streams was slightly modified from the log-law 

equation for hydraulically rough surfaces (Chang, 1988 p. 46). Due to the protrusion of 

roughness elements through into the fully turbulent zone, the effects of fluid viscosity are 

not felt by the fluid and instead the shear stress, density, and roughness height dominate 

the velocity profile. A scaling factor, 𝐶𝐶, is also introduced to fit the integrated velocity 

profiles (flow rates) with field measurements in the following equation for velocity as 

𝐶𝐶 = 𝑈𝑈∗
𝐶𝐶

× �1
𝜅𝜅

ln � 𝑧𝑧
𝑘𝑘𝑠𝑠
� + 8.5�,             (12) 

where, 𝑘𝑘𝑠𝑠 is the equivalent mean diameter of sand grains (m). Figure 4-3 shows a sample 

velocity profile and concentration profile for one of the surface tributaries to the system.  

 The velocity profile for the karst conduit was estimated using the one-seventh 

power-law velocity profile for turbulent flow (De Chant, 2005) as shown in the following 

equation as 

𝐶𝐶 = 𝑈𝑈𝑚𝑚𝑢𝑢𝑚𝑚 �1 − 𝑢𝑢
𝑅𝑅
�
1
𝑛𝑛,               (13) 
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where, 𝑈𝑈𝑚𝑚𝑢𝑢𝑚𝑚 is the centerline, maximum velocity in the conduit (m s-1), 𝑟𝑟 is the distance 

(m) from the centerline of the conduit to the wall of the conduit constrained by 0 and 𝑅𝑅, 

the radius (m), and 𝑛𝑛 is the exponent for the power-law which increases with increasing 

Reynolds number, but is commonly assumed as 7 for fully turbulent flow. Figure 4-4 shows 

a sample velocity profile and concentration profile for the conduit.  

 Equation (7) is used together with channel geometry and equations (8) and (12), 

and we arrive at the final equation for sediment discharge (kg s-1) for streams:  

𝑄𝑄𝑠𝑠𝑠𝑠 = 𝑞𝑞𝑠𝑠𝑠𝑠 ∙ 𝐵𝐵 = 𝐵𝐵 ∫ 𝐶𝐶𝑢𝑢 �
𝐷𝐷−𝑧𝑧
𝑧𝑧

𝑢𝑢
𝐷𝐷−𝑢𝑢

�
𝑧𝑧∗
∙ 𝑈𝑈∗
𝐶𝐶
∙ �1
𝜅𝜅

ln � 𝑧𝑧
𝑘𝑘𝑠𝑠
�+ 8.5� 𝑑𝑑𝑑𝑑𝐷𝐷

𝑢𝑢 ,        (14) 

and for the conduit referring back to equation (7) together with (8) and (13):  

𝑄𝑄𝑠𝑠𝑠𝑠 = 𝑞𝑞𝑠𝑠𝑠𝑠 ∙ 𝐵𝐵 = 𝐵𝐵 ∫ 𝐶𝐶𝑢𝑢 �
𝐷𝐷−𝑧𝑧
𝑧𝑧

𝑢𝑢
𝐷𝐷−𝑢𝑢

�
𝑧𝑧∗
∙ 𝑈𝑈𝑚𝑚𝑢𝑢𝑚𝑚 �1 − 𝑢𝑢

𝑅𝑅
�
1
𝑛𝑛 𝑑𝑑𝑑𝑑𝐷𝐷

𝑢𝑢 .         (15) 

4.2.3 Particle Size Distribution 

The Urban Trib, Ag Trib, Groundwater Station, and Surface Outflow locations 

were sampled and analyzed for the particle size distributions of the sediment. Suspended 

sediment samples were collected from the two inflow tributaries to the system as well as 

the surface and subsurface outflows (see Figure 3-1). Samples collected in the field were 

returned to the laboratory where the fine fraction of the sediment was wet-sieved from the 

bulk sample. Afterwards a subsample of the fine portion was run through a LISST-

Portable|XR particle size analyzer. The LISST particle size analyzer works by using laser 

light scattering or laser diffraction. De-ionized water constantly recirculates the sediment 

sample within the mixing chamber where the instrument measures the angular variation in 

intensity of light scattered as a laser beam is passed through the sample. The LISST particle 
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size analyzer measures sediment particles between 0.34 - 500 μm and outputs D10, D16, 

D50, D60, D84, and D90 readings. The particle size distributions of sediment from different 

locations in the watershed can be seen in Figure 4-5.  

4.3 Carbon Data 

4.3.1 Source Sampling 

The carbon sources to the coupled surface-subsurface drainage network were 

separated as two allochthonous sources (soil and litter) and one autochthonous source 

(algae).  In this study, the transported POC of inflowing tributaries was measured in a 

stream impacted by urban development and one dominated by agricultural land use. The 

data collected and analyzed from these trap samples were used to calibrate the carbon flux 

portion of the model. The tributaries (Urban Trib and Ag Trib) to the system were sampled 

on a predominantly bi-weekly sampling routine for a period of almost two years (09/2011-

07/2013). 

The method to collect these samples is described by Phillips et al. (2000) and 

includes installing in situ sediment trap samplers to collect time-integrated samples. The 

trap samplers can be seen in Figure 4-6. The sampler works by accelerating the fluid and 

sediment through the small opening nozzle and then suddenly expanding into a larger 

cross-sectional area which slows the velocity of the fluid inside of the trap considerably. 

The decrease in velocity allows for the particles to settle to the bottom of the trap where 

they are recovered when the sampler is pulled from the stream. Water exits through a small 

diameter hole at the end of the sampler. The sampler does preferentially collect coarser 

sediment due to the smaller particles remaining suspended for a long enough duration to 
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allow for passing through the trap, however the sampler does a sufficient job of providing 

representative, integrated total carbon during the sampling period (Phillips et al., 2000; 

Ford and Fox, 2012). 

Table 4-3 shows the source contribution of the soil, litter, and algae pools. The soil 

carbon pool was the highest source of carbon to the Cane Run Watershed. The other 

allochthonous source was litter detritus which is derived from trees and riparian vegetation. 

Litter represents the second largest contributor of organic carbon to the Cane Run 

Watershed.  Autochthonous or algal carbon originates from primary production of instream 

benthic organisms. The percent of algal carbon contributing to the downstream carbon flux 

was modeled as an input because of the intermittent nature of the surface streams which do 

not sustain water year round and provide conventional growth for instream producers. 

Urban streams were assumed to not have any primary production due to the quick pirating 

of flow by the subsurface karst. 

4.3.2 Outlet Sampling 

Outlets (Surface Outflow, Groundwater Station, and Royal Spring) were also 

instrumented with sediment trap samplers. The surface stream outlet was instrumented 

similarly to the tributaries. Due to the phreatic conduit at the Groundwater Station being 

sixty feet below the ground surface and that constant pump-sampling would be costly and 

time-intensive, an integrated trap sampler was installed downstream of the conduit where 

it re-surfaces as Royal Spring (see Figure 3-1). There were believed to be no significant 

additional carbon sources contributing to the conduit from the Groundwater Station to 

Royal Spring due to the diverging pathways of the surface channel and subsurface conduit. 

Additionally, the hydraulics and flow of the two sites are comparable and allow for the 
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extension of analysis from the conduit at the Groundwater Station to the conduit outlet (i.e., 

Royal Spring). Maximum weekly flows between the two sites showed a near 1:1 

relationship indicating that the ability of the conduit to transport sediment in the final third 

of the conduit (Figure 4-7).  The duration of sampling for the surface outlet was two years 

(2011-2013) while the subsurface pathway was sampled for one year (2012-2013). 

4.3.3 Lab Analysis 

The sediment trap samplers were installed at inlets and outlets to the system in order 

to collect time-integrated samples. The traps were routinely brought back to the lab, the 

sediment separated from the trap into a bucket, cleaned, and then re-installed in the field. 

Samples brought back to the lab went through a biogeochemical analysis process consisting 

of centrifugation, freezing, freeze drying, consolidating and weighing, wet sieving, and 

isotope ratio mass spectrometry. The first step in the process involves allowing the 

sediment within a 19 L bucket to settle to the bottom by placing the bucket in a refrigerator 

for 48 hours. Refrigeration of the sample to approximately 1.6°C promoted settling of the 

sediment. Afterwards, most of the water in the bucket was decanted using a siphon right 

up until the moment that the settled sediment was disturbed. The remaining sediment slurry 

was dispensed into 750 mL bottles and placed into a centrifuge. The 750 mL bottles were 

decanted and centrifuged until there was 100 mL or less of water remaining in the sample. 

The bottles were then placed in a freezer overnight until the sample was completely frozen. 

Afterwards the samples were placed into a Thermo Electron Corporation® Modulyo-D 

freeze dryer where pressure and temperature were reduced down to 3.0 mbar and -40°C, 

respectively. The process of sublimation converted the ice in the sediment sample into 
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water vapor. Once completely removed of moisture, the dry mass of the sediment was 

recorded.  

Depending on the overall sample size, a subsample of either the entire sample, 0.5 

g, 1.0 g, or 2.0 g was separated from the bulk sample. The subsample was wet-sieved 

through a 53 μm sieve to separate the fine and coarse sediment within the sample. Due to 

the samples having had water added to them again, the same process of centrifuging, 

decanting, and freeze drying was repeated for the fine sediment subsample. Once 

completely dry, the mass of the remaining fine fraction of the sediment was measured. The 

coarse fraction of the sediment was discarded.  

The samples were prepared for elemental analysis by first being ground up into a 

fine powder using a Sigma-Aldrich Wig-L-Bug® grinder/mixer. The powdered sediment 

samples were weighed into silver capsules and acidified with 6% sulfurous acid to remove 

any inorganic carbonate phases in the sample (Verardo et al., 1990). Finally, samples were 

analyzed in a Costech® 4010 elemental analyzer coupled to a Finnigan Isotope Mass 

Spectrometer which estimated percent carbon and the carbon isotopic ratio of C13/C12 

within the sample versus that of the elemental standard used, acetanilide. 

4.4 Numerical Modeling  

The numerical modeling framework for the coupled surface-subsurface model is 

shown in Figure 4-8. The inputs to the model consisted of surface and subsurface 

hydrologic, hydraulic, and isotopic data and parameters. Sediment processes simulated 

within the model are in-stream erosion, temporary sediment storage, SFGL and deep-bed 

mixing, sediment flux and conduit bed depth evolution. Additionally, sediment pirated 
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from surface streams into the subsurface by swallets and other karst features was modeled 

as a function of sediment concentration in surface streams and conduit flow rate. Carbon 

processes performed within the model were source discretization, multiple carbon pool 

partitioning, SOC decomposition, suspended and bed carbon mixing, and carbon dioxide 

efflux estimation. To achieve the stated goals in section 1.3, a coupled surface-subsurface 

fluviokarst model was developed to link fluvial processes in the uplands with subsurface 

transformation and conveyance processes. The model is data-driven and was calibrated by 

data obtained from two years of sample collection and monitoring. Data collected included 

suspended sediment concentrations for sediment model calibration and organic carbon 

samples for carbon model calibration. Parameters were estimated through a 70/30 

calibration/validation time period.  

4.4.1 Water Budget and Hydrologic Model 

Using a control volume approach that included upscaling the tributary catchments 

to the system as inflows and incorporating downstream surface and subsurface pathways 

as outflows, a change in storage was modeled for the system (Figure 4-9).  The change in 

storage �𝑑𝑑𝑑𝑑
𝑑𝑑𝑖𝑖
� calculations are data-driven by using equation (16) and inputting the recorded 

inflows and outflows to the system at each time step:  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑖𝑖

= [Σ𝑄𝑄𝐼𝐼𝐼𝐼 − ΣQOUT]𝐶𝐶𝐶𝐶 = 𝑄𝑄𝐼𝐼𝐼𝐼𝐴𝐴𝐴𝐴 + 𝑄𝑄𝐼𝐼𝐼𝐼𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 − 𝑄𝑄𝑂𝑂𝑈𝑈𝑇𝑇𝐶𝐶𝐶𝐶𝑈𝑈𝐶𝐶𝑈𝑈𝐶𝐶𝐶𝐶 − 𝑄𝑄𝑂𝑂𝑈𝑈𝑇𝑇𝑆𝑆𝐶𝐶𝑈𝑈𝑆𝑆𝑈𝑈𝐴𝐴,      (16) 

where, 𝑄𝑄𝐼𝐼𝐼𝐼𝐴𝐴𝐴𝐴  is the upscaled flow in from agricultural streams (m3 s-1), 𝑄𝑄𝐼𝐼𝐼𝐼𝑈𝑈𝑅𝑅𝑈𝑈𝐴𝐴𝐼𝐼 is the 

upscaled flow in from urban streams (m3 s-1),  𝑄𝑄𝑂𝑂𝑈𝑈𝑇𝑇𝐶𝐶𝐶𝐶𝑈𝑈𝐶𝐶𝑈𝑈𝐶𝐶𝐶𝐶 is the outflow from the conduit 

(m3 s-1), and 𝑄𝑄𝑂𝑂𝑈𝑈𝑇𝑇𝑆𝑆𝐶𝐶𝑈𝑈𝑆𝑆𝑈𝑈𝐴𝐴  is the outflow from the surface stream (m3 s-1). 



www.manaraa.com

 

66 
 

4.4.2 Hydraulic Model 

The transport of sediment in the subsurface is driven by shear forces exerted from 

the conveyance of fluid within the conduit. Therefore, a hydraulic model is needed to 

predict fluid shear stress and transport capacity. Energy losses in the subsurface conduit 

were investigated with a pipe flow modelling approach using the Darcy friction factor to 

represent flow resistance. Due to the heterogeneous nature of karst conduits, identifying 

individual discontinuities and point losses (i.e., minor losses) involves additional 

assumptions and over-specification of unknowns within the system. Thus, head losses in 

the model were assumed to be major losses manifested by the roughness of the conduit 

wall.  

The friction factor was estimated by solving the Energy Equation for a segment of 

the conduit, as 

𝑝𝑝1
𝛾𝛾

+ 𝑑𝑑1 + 𝑣𝑣12

2𝑔𝑔
− 𝑓𝑓 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎2

2𝑔𝑔
𝐿𝐿
𝐷𝐷

 =  𝑝𝑝2
𝛾𝛾

+ 𝑑𝑑2 + 𝑣𝑣22

2𝑔𝑔
,           (17) 

where, 𝑝𝑝 is the pressure (N m-2), 𝛾𝛾 is the specific weight of the fluid (N m-3), 𝑑𝑑 is the 

elevation (m), 𝑣𝑣 is the velocity of the fluid (m s-1), 𝑎𝑎 is the acceleration due to gravity (m 

s-2), f is the Darcy friction factor, 𝐿𝐿 is the length of the conduit including sinuosity (m), 

𝑉𝑉𝑢𝑢𝑣𝑣𝑔𝑔2  is the average velocity of the fluid at a given cross-section (m s-1), and 𝐷𝐷 is the average 

equivalent diameter of the conduit (m). The subscripts 1 and 2 represent the Groundwater 

Station and Royal Spring, respectively.    

The karst cave is a complex system which exhibits vast heterogeneity; the 

roughness, tortuosity, and turbulence are extremely variable along most reaches of the 

conduit and often times it is extremely difficult to get a single, representative friction factor 
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for the entire conduit. However, the median of the modeled results from equation (17) was 

used in the sediment transport model due to it being near the 1st quartile, the mean, and the 

3rd quartile of the dataset. Equation (17) was solved for low and high velocities (0.02 – 0.39 

m s-1) to arrive at a friction factor that captures the effects of a range of flow conditions. 

Other karst study locations such as Jordtulla, Norway (Lauritzen et al. 1985) and Holloch, 

Switzerland (Jeannin and Marechal, 1995) have friction factor values ranging from 0.12 to 

104, respectively. Figure 4-10 shows the relationship between friction factor and conduit 

velocity.  

A mass balance approach was applied to model the sediment transport within the 

conduit. The model framework was adapted from the work by Russo and Fox (2012) on 

surface streams in the Inner Bluegrass Region with similar suspended sediment, physical, 

biological, and chemical properties. The length of each cell in the conduit was selected in 

order to satisfy the Courant-Friedrichs-Lewy condition in which the spatial scales and 

timescales are on the same order of magnitude as the downstream transmission of 

information (Islam and Chaudhry, 1997). For each cell, 𝑗𝑗, in the conduit, the suspended 

sediment at each time step, 𝑄𝑄𝑄𝑄𝑖𝑖, was given as 

𝑄𝑄𝑄𝑄𝑖𝑖 = 𝑄𝑄𝑄𝑄𝑖𝑖−1 + 𝐸𝐸𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙𝑖𝑖 + 𝐸𝐸𝑢𝑢𝑏𝑏𝑑𝑑𝑖𝑖 − 𝐷𝐷𝑖𝑖 + 𝑃𝑃𝑑𝑑𝑄𝑄𝑠𝑠𝑠𝑠 𝑝𝑝𝑖𝑖𝑢𝑢𝑢𝑢𝑖𝑖𝑏𝑏𝑑𝑑𝑖𝑖Δ𝐶𝐶 + 𝑄𝑄𝑠𝑠𝑠𝑠𝑖𝑖
𝑗𝑗−1Δ𝐶𝐶 − 𝑄𝑄𝑠𝑠𝑠𝑠𝑂𝑂𝑈𝑈𝑇𝑇𝑖𝑖Δ𝐶𝐶,             (18) 

where, 𝑄𝑄𝑄𝑄𝑖𝑖−1 is the mass of suspended sediment from the previous time step (kg), 𝐸𝐸𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙𝑖𝑖 is 

the mass of SFGL eroded from the conduit during the time step (kg), 𝐸𝐸𝑢𝑢𝑏𝑏𝑑𝑑𝑖𝑖 is the mass of 

bed material eroded from the conduit during the time step (kg), 𝐷𝐷𝑖𝑖 is the mass of sediment 

deposited to the conduit (kg), 𝑃𝑃𝑑𝑑 is the density of swallets connecting the surface to the 

subsurface in a given reach (unitless), 𝑄𝑄𝑠𝑠𝑠𝑠 𝑝𝑝𝑖𝑖𝑢𝑢𝑢𝑢𝑖𝑖𝑏𝑏𝑑𝑑𝑖𝑖 is the sediment flow rate of pirated 



www.manaraa.com

 

68 
 

sediment into the conduit cell (kg s-1), 𝑄𝑄𝑠𝑠𝑠𝑠𝑖𝑖
𝑗𝑗−1 is the suspended sediment flow rate into a 

given cell from the cell directly upstream (kg s-1), 𝑄𝑄𝑠𝑠𝑠𝑠𝑂𝑂𝑈𝑈𝑇𝑇𝑖𝑖 is the suspended sediment flow 

rate out of the conduit reach at the time step (kg s-1), and Δt is the time step length (s). The 

sediment outflow during a time step was calculated as 

𝑄𝑄𝑠𝑠𝑠𝑠𝑂𝑂𝑈𝑈𝑇𝑇𝑖𝑖 = 𝑑𝑑𝑑𝑑𝑖𝑖
𝐶𝐶𝑖𝑖
𝑄𝑄𝑖𝑖,              (19) 

where, 𝑉𝑉𝑖𝑖 is equal to the volume of water in the conduit at a cell (m3), and 𝑄𝑄𝑖𝑖 is the flow 

rate of the conduit at a given cell (m3 s-1). Finally, equation (19) can be rewritten as  

𝑄𝑄𝑄𝑄𝑖𝑖 = 𝑄𝑄𝑄𝑄𝑖𝑖−1 + 𝐸𝐸𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙𝑖𝑖 + 𝐸𝐸𝑢𝑢𝑏𝑏𝑑𝑑𝑖𝑖 − 𝐷𝐷𝑖𝑖 + 𝑃𝑃𝑑𝑑𝑄𝑄𝑠𝑠𝑠𝑠 𝑝𝑝𝑖𝑖𝑢𝑢𝑢𝑢𝑖𝑖𝑏𝑏𝑑𝑑𝑖𝑖Δ𝐶𝐶 + 𝑄𝑄𝑠𝑠𝑠𝑠𝑖𝑖
𝑗𝑗−1Δ𝐶𝐶 − 𝑑𝑑𝑑𝑑𝑖𝑖

𝐶𝐶𝑖𝑖
𝑄𝑄𝑖𝑖Δ𝐶𝐶,      (20) 

and rearranging the above equation to solve for suspended sediment yields the solution as 

𝑄𝑄𝑄𝑄𝑖𝑖 =
𝑑𝑑𝑑𝑑𝑖𝑖−1+𝐸𝐸𝑠𝑠𝑠𝑠𝑎𝑎𝑙𝑙𝑖𝑖+𝐸𝐸𝑏𝑏𝑏𝑏𝑑𝑑𝑖𝑖−𝐷𝐷𝑖𝑖+𝑃𝑃𝑆𝑆𝑄𝑄𝑠𝑠𝑠𝑠 𝑝𝑝𝑖𝑖𝑝𝑝𝑎𝑎𝑝𝑝𝑏𝑏𝑑𝑑𝑖𝑖Δ𝑖𝑖+𝑄𝑄𝑠𝑠𝑠𝑠𝑖𝑖

𝑗𝑗−1Δ𝑖𝑖

1+�
𝑄𝑄𝑖𝑖Δ𝑝𝑝
𝑉𝑉𝑖𝑖

�
.          (21) 

 The mass flux of sediment pirated from the main surface channel into a given cell 

in the subsurface model was modeled as a function of the flow rate in the conduit and the 

average TSS of urban and agricultural streams. Sediment pirated from the surface was 

modeled as:  

𝑄𝑄𝑠𝑠𝑠𝑠 𝑝𝑝𝑖𝑖𝑢𝑢𝑢𝑢𝑖𝑖𝑏𝑏𝑑𝑑𝑖𝑖 = 𝑄𝑄𝑖𝑖 ∙ 𝐶𝐶𝑠𝑠𝑠𝑠,              (22) 

where, 𝑄𝑄𝑖𝑖 is the water flow rate in the subsurface conduit (m3 s-1), and 𝐶𝐶𝑠𝑠𝑠𝑠 is the average 

concentration of suspended solids in surface streams (mg L-1). It was assumed that when 

water was present in the surface channel and sediment as being conveyed, an equivalent 

amount of surface water displaces the water discharged by the conduit at each time step. 
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The pirated sediment as then distributed throughout the cells in the subsurface conduit 

system that are connected to the surface. Table 4-4 shows the spatial density of the swallets 

(i.e., the number of swallets in a given reach divided by the total number of swallets in the 

entire watershed) on the surface as they are aligned with cells in the subsurface conduit. It 

was also assumed that flow rate was pirated proportionally to swallet density to maintain 

conservation of mass (e.g. a swallet density of 0.09 at one conduit cell would receive 9% 

of total pirated surface flow and sediment). Cells 1 through 10 are physically connected to 

the surface and take in sediment and flow while cells 11 through 16 act simply as conveyors 

of conduit sediment (Figure 4-11). 

 The model assumes that erosion and deposition are mutually exclusive processes 

within the model (i.e., if erosion occurs in a time step then no deposition can occur within 

that same time step and vice versa). The mechanism by which the SFGL and bed material 

of the conduit are eroded was through shear stress induced by the movement of fluid 

modeled as  

𝜏𝜏𝑜𝑜 = 𝑓𝑓𝜌𝜌𝑤𝑤𝑎𝑎𝑝𝑝𝑏𝑏𝑝𝑝𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎2

8
,              (23) 

where, 𝜏𝜏𝑜𝑜 is shear stress of the fluid at the conduit wall (N m-2) and 𝜌𝜌𝑤𝑤𝑢𝑢𝑖𝑖𝑏𝑏𝑢𝑢 is the density 

of the fluid (kg m-3).  

Erosion of the SFGL layer was only possible if the transport capacity of the fluid 

to carry energy was greater than the amount of sediment already in suspension. Likewise, 

material was deposited from suspension when the amount of material exceeds the energy 

of the fluid to keep the sediment entrained. The transport capacity (kg) was modeled as 
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𝑇𝑇𝑐𝑐𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑐𝑐�𝜏𝜏𝑜𝑜𝑖𝑖�
1.5
𝐿𝐿Δ𝐶𝐶,               (24) 

where, 𝐶𝐶𝑖𝑖𝑐𝑐 is the transport calibration coefficient (m1/2s2 kg-1/2), 𝜏𝜏𝑜𝑜𝑖𝑖 is the shear stress of the 

fluid at the sediment boundary (N m-2), and 𝐿𝐿 is the length of the conduit reach (m). The 

transport calibration coefficient was used to differentiate between high and low flow 

regimes in the conduit. A boundary flow rate was chosen to separate low flow and high 

flow transport coefficients. The transport coefficients are unique to each watershed and as 

a result were calibrated to sediment yield data (Russo and Fox, 2012). High and low 

transport coefficients reflect the change in sediment transport behavior between baseflow 

and hydrologic events. 

The conduit bed was modeled as a composition of two layers of material: the SFGL 

and the deep bed sediment. The SFGL is typically the most easily erodible sediment while 

deep bed sediment is only accessed when the SFGL is entirely depleted. The amount of 

deep bed sediment that can be eroded is a function of critical shear stress and also the 

residual transport carrying capacity. As some of the SFGL is entrained into the water 

column, it reduces the remaining transport energy for additional sediment to be entrained 

(Chang, 1998). The residual transport carrying capacity (kg) of the fluid to erode the first 

source of sediment from the bed was modeled as 

𝑇𝑇𝑢𝑢𝑏𝑏𝑠𝑠𝑖𝑖 = 𝑇𝑇𝑐𝑐𝑖𝑖 − 𝑄𝑄𝑄𝑄𝑖𝑖−1,              (25) 

A residual transport capacity is also calculated for sediment sources deeper than the SFGL. 

For additional bed sources the residual bed carrying capacity (kg) was modeled as:  

𝑇𝑇𝑢𝑢𝑏𝑏𝑠𝑠𝑖𝑖
𝑢𝑢𝑏𝑏𝑑𝑑 = 𝑇𝑇𝑢𝑢𝑏𝑏𝑠𝑠𝑖𝑖 − 𝐸𝐸𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙𝑖𝑖,              (26) 
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 The availability of the sediment sources within the conduit to be eroded was limited 

either by shear, transport capacity, or by supply (Russo and Fox, 2012). The source was 

considered shear limited when its critical shear stress is greater than that of the shear stress 

enacted by the fluid and incipient motion does not occur. The source was considered 

transport capacity limited if the energy of the water to entrain sediment is surpassed. 

Finally, supply limited sources were those that had been exhausted (i.e., the supply of the 

source was 0 kg) and are bypassed for other sources. Erosion of the SFGL was modeled 

using 

𝐸𝐸𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙𝑖𝑖 = min ��𝑎𝑎𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙 �𝜏𝜏𝑜𝑜𝑖𝑖 − 𝜏𝜏𝑐𝑐𝑢𝑢𝑠𝑠𝑠𝑠𝑎𝑎𝑙𝑙�
𝑢𝑢𝑠𝑠𝑠𝑠𝑎𝑎𝑙𝑙

𝑄𝑄𝐴𝐴𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙𝛥𝛥𝐶𝐶� , �𝑇𝑇𝑢𝑢𝑏𝑏𝑠𝑠𝑖𝑖�, �𝑄𝑄𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙𝑖𝑖��,       (27) 

where, 𝑎𝑎𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙 is the erodibility of the SFGL source (kg Pa-1m-2s-1), 𝜏𝜏𝑐𝑐𝑢𝑢𝑠𝑠𝑠𝑠𝑎𝑎𝑙𝑙 is the critical shear 

stress of the SFGL source (N m-2), 𝑏𝑏𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙 is an exponent for SFGL erosion (unitless), 𝑄𝑄𝐴𝐴𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙 

is the surface area of the SFGL source (m2), and 𝑄𝑄𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙𝑖𝑖 is the supply of the SFGL source 

(kg). Erosion of the bed material was modeled in a similar manner 

𝐸𝐸𝑢𝑢𝑏𝑏𝑑𝑑𝑖𝑖 = min ��𝑎𝑎𝑢𝑢𝑏𝑏𝑑𝑑�𝜏𝜏𝑜𝑜𝑖𝑖 − 𝜏𝜏𝑐𝑐𝑢𝑢𝑏𝑏𝑏𝑏𝑑𝑑�
𝑢𝑢𝑏𝑏𝑏𝑏𝑑𝑑𝑄𝑄𝐴𝐴𝑢𝑢𝑏𝑏𝑑𝑑𝛥𝛥𝐶𝐶� , �𝑇𝑇𝑢𝑢𝑏𝑏𝑠𝑠𝑖𝑖

𝑢𝑢𝑏𝑏𝑑𝑑�, �𝑄𝑄𝑢𝑢𝑏𝑏𝑑𝑑𝑖𝑖��,        (28) 

where, 𝑎𝑎𝑢𝑢𝑏𝑏𝑑𝑑 is the erodibility of the bed source (kg Pa-1m-2s-1), 𝜏𝜏𝑐𝑐𝑢𝑢𝑏𝑏𝑏𝑏𝑑𝑑 is the critical shear 

stress of the bed source (N m-2), 𝑏𝑏𝑢𝑢𝑏𝑏𝑑𝑑 is an exponent for bed erosion (unitless), 𝑄𝑄𝐴𝐴𝑢𝑢𝑏𝑏𝑑𝑑 is 

the surface area of the bed source (m2), 𝑇𝑇𝑢𝑢𝑏𝑏𝑠𝑠𝑖𝑖
𝑢𝑢𝑏𝑏𝑑𝑑is the residual transport capacity for the bed 

source (kg), and 𝑄𝑄𝑢𝑢𝑏𝑏𝑑𝑑𝑖𝑖  is the supply of the bed source (kg).  

 Supply of the SFGL and bed sources were modeled using a mass balance approach 

as 
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𝑄𝑄𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙𝑖𝑖 = min�𝑄𝑄𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙𝑖𝑖−1 − 𝐸𝐸𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙𝑖𝑖 + 𝐷𝐷𝑖𝑖 − 𝐷𝐷𝐸𝐸𝐶𝐶𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙𝑖𝑖 − 𝐷𝐷𝐸𝐸𝐶𝐶𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝑢𝑢𝑖𝑖 − 𝐷𝐷𝐸𝐸𝐶𝐶𝑢𝑢𝑙𝑙𝑔𝑔𝑢𝑢𝑏𝑏𝑖𝑖  , 𝑄𝑄𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙𝑚𝑚𝑎𝑎𝑚𝑚�,             (29) 

where, 𝑄𝑄𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙𝑖𝑖−1  is the supply of SFGL from the previous time step (kg), 𝐷𝐷𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙𝑖𝑖 is the amount 

of SFGL deposited out of suspension in the time step (kg), 𝐷𝐷𝐸𝐸𝐶𝐶𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙𝑖𝑖 ,𝐷𝐷𝐸𝐸𝐶𝐶𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝑢𝑢𝑖𝑖 ,𝐷𝐷𝐸𝐸𝐶𝐶𝑢𝑢𝑙𝑙𝑔𝑔𝑢𝑢𝑏𝑏𝑖𝑖 

are the amounts of organic carbon decomposed to into dissolved carbon from soil, litter, 

and algae sources, respectively (kg), 𝑄𝑄𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙𝑚𝑚𝑎𝑎𝑚𝑚  is the maximum allowable supply of SFGL 

(kg). The SFGL was assumed to be the top biologically active layer of the conduit sediment 

that is limited to a maximum depth of 5 mm. The maximum SFGL for any cell was 

calculated as 

𝑄𝑄𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙𝑚𝑚𝑎𝑎𝑚𝑚 = 𝑑𝑑𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙𝑚𝑚𝑎𝑎𝑚𝑚𝜌𝜌𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙𝑄𝑄𝐴𝐴,              (30) 

where, 𝑑𝑑𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙𝑚𝑚𝑎𝑎𝑚𝑚  is the maximum depth the SFGL can reach before being assimilated into 

the deeper bed (m) and 𝜌𝜌𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙 is the density of the SFGL material (kg m-3). 

The supply of SFGL allowed for microbial activity and the transformation of 

organic carbon into inorganic carbon. All suspended sediment that was deposited to the 

conduit was assumed to be assimilated into the SFGL layer first. Once the SFGL layer was 

at a maximum depth, the SFGL sediment at the SFGL/bed interface assimilated into the 

deep bed sediment. Supply of the bed was modeled in a similar manner as  

𝑄𝑄𝑢𝑢𝑏𝑏𝑑𝑑𝑖𝑖 = 𝑄𝑄𝑢𝑢𝑏𝑏𝑑𝑑𝑖𝑖−1 − 𝐸𝐸𝑢𝑢𝑏𝑏𝑑𝑑𝑖𝑖 + 𝐴𝐴𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙𝑖𝑖,            (31) 

where, 𝑄𝑄𝑢𝑢𝑏𝑏𝑑𝑑𝑖𝑖−1 is the supply of bed sediment in the previous time step (kg) and 𝐴𝐴𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙𝑖𝑖 is the 

amount of SFGL sediment assimilated into the deep bed (kg) which was modeled as 

𝐴𝐴𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙𝑖𝑖 = 𝑄𝑄𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙𝑖𝑖 − 𝑄𝑄𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙𝑚𝑚𝑎𝑎𝑚𝑚 ,              (32) 
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SFGL sediment is only assimilated into the deeper bed if the maximum supply of SFGL 

sediment was exceeded due to deposition of suspended sediments.  

 The depth of the SFGL was also continuously monitored throughout the model as 

𝑑𝑑𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙𝑖𝑖 = min �
𝑑𝑑𝑠𝑠𝑠𝑠𝑎𝑎𝑙𝑙𝑖𝑖
𝜌𝜌𝑠𝑠𝑠𝑠𝑎𝑎𝑙𝑙𝑑𝑑𝐴𝐴

, 𝑑𝑑𝑠𝑠𝑠𝑠𝑎𝑎𝑙𝑙𝑚𝑚𝑎𝑎𝑚𝑚
𝜌𝜌𝑠𝑠𝑠𝑠𝑎𝑎𝑙𝑙𝑑𝑑𝐴𝐴

�,               (33) 

where, 𝜌𝜌𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙 is the density of the surface fine grained laminae material (kg m-3). The bed 

depth was modeled as  

𝑑𝑑𝑢𝑢𝑏𝑏𝑑𝑑𝑖𝑖 =
𝑑𝑑𝑏𝑏𝑏𝑏𝑑𝑑𝑖𝑖
𝜌𝜌𝑏𝑏𝑏𝑏𝑑𝑑𝑑𝑑𝐴𝐴

,              (34) 

 Deposition was modeled at each time step if the transport carrying capacity was 

exceeded by the suspended sediment load. The suspended sediment was deposited first into 

the SFGL and modeled as 

𝐷𝐷𝑖𝑖 = 𝜔𝜔𝑠𝑠Δ𝑖𝑖
𝑘𝑘𝑝𝑝𝐻𝐻

�𝑄𝑄𝑄𝑄𝑖𝑖−1 − 𝑇𝑇𝑐𝑐𝑖𝑖�,              (35) 

where, 𝐷𝐷𝑖𝑖 is the mass of sediment deposited in the time step (kg), 𝜔𝜔𝑠𝑠 is the settling velocity 

of the entrained particles (m s-1), 𝑘𝑘𝑝𝑝 is the deposition coefficient based on the Rouse 

concentration profile, 𝐻𝐻 is the height of the conduit (m), and 𝑇𝑇𝑐𝑐𝑖𝑖 is the transport carrying 

capacity of the fluid (kg).  

4.4.3 Carbon Model 

Carbon in the subsurface karst system was derived from surface sources such as 

terrestrial and autochthonous carbon. Sources of carbon to the subsurface include soil 

organic carbon, algal or autochthonous carbon, and allochthonous leaf litter. Allocating the 
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contribution of carbon from various locations in the watershed was performed by using a 

least squares method (Davis and Fox, 2008). The tracer used in this study was the δ13C 

isotopic signature of collected sediment due to the fact that δ13C has been found to 

discriminate sources in this region (Ford and Fox, 2014). The carbon pool sources are soil 

organic carbon, litter detritus carbon, and autochthonous algal carbon. The un-mixing was 

modeled as a conservation of mass using equations 

𝑑𝑑𝑇𝑇 = ∑ (𝑒𝑒𝑘𝑘𝑇𝑇 × 𝑃𝑃𝑘𝑘)𝑘𝑘 ,              (36) 

and 

∑ 𝑃𝑃𝑘𝑘 = 1𝑘𝑘 ,               (37) 

where, 𝑑𝑑 is the tracer data from the sampled soil, 𝑒𝑒 is the tracer data of the source, 𝑇𝑇 is 

represents the tracer being used, 𝑘𝑘 indicates the carbon pool source, 𝑃𝑃 is the fraction of 

carbon originate from a particular source. The matrix formed by equations (36) and (37) 

was overdetermined if two tracers were used and can be solved efficiently using the above 

framework. However, in this study only one tracer was used to solve equations (36) and 

(37). The source fraction of algae, 𝑃𝑃𝑢𝑢𝑙𝑙𝑔𝑔𝑢𝑢𝑏𝑏, was treated as an input for the system 

parameterized by percent algae distributions in the literature (Ford et al., 2015).  Urban fed 

streams in the system do not provide a benthic ecosystem for a duration long enough to 

sustain autochthonous plant growth. In-field observations along urban tributaries of the 

watershed verified this assumption. Therefore, urban streams in the watershed were 

modeled as having only two sources: soil organic carbon and allochthonous leaf litter. 
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The carbon model budgeted three separate pools of organic carbon: the suspended 

sediment organic carbon (𝑄𝑄𝑄𝑄𝑑𝑑𝑂𝑂𝐶𝐶𝑖𝑖) was comprised of soil organic carbon (𝑄𝑄𝑄𝑄𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙𝑖𝑖), litter 

detritus carbon (𝑄𝑄𝑄𝑄𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝑢𝑢𝑖𝑖), and autochthonous algal carbon (𝑄𝑄𝑄𝑄𝑢𝑢𝑙𝑙𝑔𝑔𝑢𝑢𝑏𝑏𝑖𝑖)   

𝑄𝑄𝑄𝑄𝑑𝑑𝑂𝑂𝐶𝐶𝑖𝑖 = 𝑄𝑄𝑄𝑄𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙𝑖𝑖 + 𝑄𝑄𝑄𝑄𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝑢𝑢𝑖𝑖 + 𝑄𝑄𝑄𝑄𝑢𝑢𝑙𝑙𝑔𝑔𝑢𝑢𝑏𝑏𝑖𝑖,            (38) 

The bed SOC was budgeted with the same approach as 

𝑄𝑄𝑑𝑑𝑂𝑂𝐶𝐶𝑖𝑖 = 𝑄𝑄𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙𝑖𝑖 + 𝑄𝑄𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝑢𝑢𝑖𝑖 + 𝑄𝑄𝑢𝑢𝑙𝑙𝑔𝑔𝑢𝑢𝑏𝑏𝑖𝑖,             (39) 

where, 𝑄𝑄𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙𝑖𝑖 is the supply of soil carbon in the bed (kg), 𝑄𝑄𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝑢𝑢𝑖𝑖 is the supply of litter carbon 

in the bed (kg), and 𝑄𝑄𝑢𝑢𝑙𝑙𝑔𝑔𝑢𝑢𝑏𝑏𝑖𝑖 is the supply of algal carbon in the bed (kg).  

The carbon content of suspended and bed sediments was calculated throughout the 

model using a mass balance and decomposition routine. During the temporary storage of 

sediment in the SFGL, the microbial community works to transform terrestrial and 

autochthonous derived carbon (Webster et al., 1999; Alvarez and Guerrero, 2000; Jackson 

and Vollaire, 2007). Suspended sediment organic carbon (SOC) (𝑄𝑄𝑄𝑄𝑑𝑑𝑂𝑂𝐶𝐶𝑖𝑖), and all three 

pools, in the system were modeled at the same intervals and locations as sediment using  

𝑄𝑄𝑄𝑄𝑑𝑑𝑂𝑂𝐶𝐶𝑖𝑖 = 𝑄𝑄𝑄𝑄𝑑𝑑𝑂𝑂𝐶𝐶𝑖𝑖−1 + 𝐸𝐸𝑑𝑑𝑂𝑂𝐶𝐶𝑖𝑖 − 𝐷𝐷𝑑𝑑𝑂𝑂𝐶𝐶𝑖𝑖 + 𝑃𝑃𝑑𝑑𝑄𝑄𝑠𝑠𝑠𝑠 𝑝𝑝𝑖𝑖𝑢𝑢𝑢𝑢𝑖𝑖𝑏𝑏𝑑𝑑𝑖𝑖SOC%𝑝𝑝𝑖𝑖𝑢𝑢𝑢𝑢𝑖𝑖𝑏𝑏𝑑𝑑Δ𝐶𝐶 + 𝑄𝑄𝑑𝑑𝑂𝑂𝐶𝐶𝑖𝑖
𝑗𝑗−1 Δ𝐶𝐶 −

𝑄𝑄𝑑𝑑𝑂𝑂𝐶𝐶 𝑂𝑂𝑈𝑈𝑇𝑇𝑖𝑖Δ𝐶𝐶 + 𝑋𝑋𝑈𝑈𝐸𝐸𝐷𝐷→𝑑𝑑𝑑𝑑 − 𝑋𝑋𝑑𝑑𝑑𝑑→𝑈𝑈𝐸𝐸𝐷𝐷,            (40) 

where, 𝑄𝑄𝑄𝑄𝑑𝑑𝑂𝑂𝐶𝐶𝑖𝑖−1  is the mass of SOC from the previous time step (kg), 𝐸𝐸𝑑𝑑𝑂𝑂𝐶𝐶𝑖𝑖 is the mass of 

SOC eroded from the conduit during the time step (kg), 𝐷𝐷𝑑𝑑𝑂𝑂𝐶𝐶𝑖𝑖 is the mass of SOC deposited 

to the conduit (kg), 𝑃𝑃𝑑𝑑 is the density of swallets connecting the surface to the subsurface in 

a given reach (unitless), 𝑄𝑄𝑠𝑠𝑠𝑠 𝑝𝑝𝑖𝑖𝑢𝑢𝑢𝑢𝑖𝑖𝑏𝑏𝑑𝑑𝑖𝑖 is the sediment flow rate of pirated sediment into the 



www.manaraa.com

 

76 
 

conduit cell (kg s-1), SOC%pirated is the organic content of the pirated sediment 

(gC/100gSed, calculated), 𝑄𝑄𝑑𝑑𝑂𝑂𝐶𝐶𝑖𝑖
𝑗𝑗−1  is the SOC flow rate into a given cell from the cell directly 

upstream (kg s-1), 𝑄𝑄𝑑𝑑𝑂𝑂𝐶𝐶 𝑂𝑂𝑈𝑈𝑇𝑇𝑖𝑖 is the SOC flow rate out of the conduit reach at the time step 

(kg s-1), Δt is the time step length (s), 𝑋𝑋𝑈𝑈𝐸𝐸𝐷𝐷→𝑑𝑑𝑑𝑑 is the mass of bed SOC exchanged with the 

suspended SOC (kg), and 𝑋𝑋𝑑𝑑𝑑𝑑→𝑈𝑈𝐸𝐸𝐷𝐷 is the mass of suspended SOC exchanged with bed SOC 

(kg).  

Rearranging equation (40) using the same approach as equation (21) to solve for 

suspended SOC: 

𝑄𝑄𝑄𝑄𝑑𝑑𝑂𝑂𝐶𝐶𝑖𝑖 =               (41) 

𝑄𝑄𝑄𝑄𝑑𝑑𝑂𝑂𝐶𝐶𝑖𝑖−1 + 𝐸𝐸𝑑𝑑𝑂𝑂𝐶𝐶𝑖𝑖 − 𝐷𝐷𝑑𝑑𝑂𝑂𝐶𝐶𝑖𝑖 + 𝑃𝑃𝑑𝑑𝑄𝑄𝑠𝑠𝑠𝑠 𝑝𝑝𝑖𝑖𝑢𝑢𝑢𝑢𝑖𝑖𝑏𝑏𝑑𝑑𝑖𝑖SOC%𝑝𝑝𝑖𝑖𝑢𝑢𝑢𝑢𝑖𝑖𝑏𝑏𝑑𝑑Δ𝐶𝐶 + 𝑄𝑄𝑑𝑑𝑂𝑂𝐶𝐶𝑖𝑖
𝑗𝑗−1 Δ𝐶𝐶 + 𝑋𝑋𝑈𝑈𝐸𝐸𝐷𝐷→𝑑𝑑𝑑𝑑 − 𝑋𝑋𝑑𝑑𝑑𝑑→𝑈𝑈𝐸𝐸𝐷𝐷

1 + �𝑄𝑄𝑖𝑖Δ𝐶𝐶𝑉𝑉𝑖𝑖
�

, 

Sediment organic carbon flux was then calculated as  

𝑄𝑄𝑑𝑑𝑂𝑂𝐶𝐶 𝑂𝑂𝑈𝑈𝑇𝑇𝑖𝑖 =
𝑑𝑑𝑑𝑑𝑆𝑆𝐶𝐶𝐶𝐶𝑖𝑖
𝐶𝐶𝑖𝑖

𝑄𝑄𝑖𝑖,              (42) 

The supply of bed sediment organic carbon (𝑄𝑄𝑑𝑑𝑂𝑂𝐶𝐶𝑖𝑖) (kg) within the surface fine 

grain laminae was modeled using a mass balance approach  

𝑄𝑄𝑑𝑑𝑂𝑂𝐶𝐶𝑖𝑖 = 𝑄𝑄𝑑𝑑𝑂𝑂𝐶𝐶𝑖𝑖−1 − 𝐸𝐸𝑑𝑑𝑂𝑂𝐶𝐶𝑖𝑖 + 𝐷𝐷𝑑𝑑𝑂𝑂𝐶𝐶𝑖𝑖 − 𝐷𝐷𝐸𝐸𝐶𝐶𝑑𝑑𝑂𝑂𝐶𝐶𝑖𝑖 − 𝑋𝑋𝑈𝑈𝐸𝐸𝐷𝐷→𝑑𝑑𝑑𝑑 + 𝑋𝑋𝑑𝑑𝑑𝑑→𝑈𝑈𝐸𝐸𝐷𝐷,       (43) 

where, 𝑄𝑄𝑑𝑑𝑂𝑂𝐶𝐶𝑖𝑖−1 is the supply of organic carbon from the previous time step (kg), 𝐸𝐸𝑑𝑑𝑂𝑂𝐶𝐶𝑖𝑖 is 

the mass of eroded carbon attached to eroded SFGL (kg), 𝐷𝐷𝑑𝑑𝑂𝑂𝐶𝐶𝑖𝑖 is the mass of organic 

carbon deposited out of suspension (kg), and 𝐷𝐷𝐸𝐸𝐶𝐶𝑑𝑑𝑂𝑂𝐶𝐶𝑖𝑖 is the decomposition of organic 

carbon through microbial respiration from the supply of the bed (kg).  



www.manaraa.com

 

77 
 

The suspended and bed soil, litter, and algae pools are modeled using equations 

(41) and (43) for each specific source. Likewise, with erosion, deposition, and fluxes, the 

percentages and quantities of soil, litter, and algae were budgeted and conserved using the 

same equations as for the sediment organic carbon. Percentages of organic carbon in the 

suspended (𝑂𝑂𝐶𝐶𝑑𝑑𝑑𝑑%) sediment and bed (𝑂𝑂𝐶𝐶𝑢𝑢𝑏𝑏𝑑𝑑%) were modeled as 

𝑂𝑂𝐶𝐶𝑑𝑑𝑑𝑑% =
𝑑𝑑𝑑𝑑𝑆𝑆𝐶𝐶𝐶𝐶𝑖𝑖
𝑑𝑑𝑑𝑑𝑖𝑖

,               (44) 

and 

𝑂𝑂𝐶𝐶𝑢𝑢𝑏𝑏𝑑𝑑% =
𝑑𝑑𝑆𝑆𝐶𝐶𝐶𝐶𝑖𝑖
𝑑𝑑𝑠𝑠𝑠𝑠𝑎𝑎𝑙𝑙𝑖𝑖

,              (45) 

The amount of eroded SOC was modeled as 

𝐸𝐸𝑑𝑑𝑂𝑂𝐶𝐶𝑖𝑖 = 𝑂𝑂𝐶𝐶𝑢𝑢𝑏𝑏𝑑𝑑% × 𝐸𝐸𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙𝑖𝑖,                        (46) 

The amount of deposited SOC was modeled as 

𝐷𝐷𝑑𝑑𝑂𝑂𝐶𝐶𝑖𝑖 = 𝑂𝑂𝐶𝐶𝑑𝑑𝑑𝑑% × 𝐷𝐷𝑖𝑖,              (47) 

 The carbon quality of the pirated sediment varied both with source and also with 

flow intensity and these variations were incorporated within the model. Urban sources in 

the Cane Run watershed had higher carbon contents than agriculture sources potentially 

due to storm sewer leaks and failures. Storm intensity had a net decreasing effect on carbon 

density of sediment due to eroding deeper, recalcitrant sediment from the surface sources. 

The urban sediment in the watershed had a distinct drop of carbon content when flows in 

the surface channel exceeded 10 m3 s-1. The SOC percentage of pirated sediment was 

calculated as 
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𝑄𝑄𝑂𝑂𝐶𝐶%𝑝𝑝𝑖𝑖𝑢𝑢𝑢𝑢𝑖𝑖𝑏𝑏𝑑𝑑 = �
𝑄𝑄𝑂𝑂𝐶𝐶𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖𝑙𝑙𝑙𝑙𝑤𝑤𝑄𝑄 ∗ 𝑃𝑃𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖 + 𝑄𝑄𝑂𝑂𝐶𝐶𝑢𝑢𝑔𝑔 ∗ 𝑃𝑃𝑢𝑢𝑔𝑔,
𝑄𝑄𝑂𝑂𝐶𝐶𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖ℎ𝑖𝑖𝑎𝑎ℎ𝑄𝑄 ∗ 𝑃𝑃𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖 + 𝑄𝑄𝑂𝑂𝐶𝐶𝑢𝑢𝑔𝑔 ∗ 𝑃𝑃𝑢𝑢𝑔𝑔,        

𝑄𝑄𝑓𝑓 𝑄𝑄 < 10 𝑚𝑚3 𝐶𝐶−1

𝑄𝑄𝑓𝑓 𝑄𝑄 > 10 𝑚𝑚3 𝐶𝐶−1
,      (48) 

where, 𝑄𝑄𝑂𝑂𝐶𝐶𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖 is the carbon content from collected urban samples (gC/100gSed), 𝑄𝑄𝑂𝑂𝐶𝐶𝑢𝑢𝑔𝑔 

is the carbon content from collected agriculture samples (gC/100gSed), 𝑃𝑃𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖 is the 

percentage of land use associated with urban activities, 𝑃𝑃𝑢𝑢𝑔𝑔 is the percentage of land use 

associated with agricultural practices, and 𝑄𝑄 is the stream flow rate (m3 s-1). Percentages of 

urban and agriculture land use can be found in Table 4-4.   

In this study we introduce the concept of suspended and bed sediment mixing with 

a net-zero effect on erosion-deposition dynamics. The mixing, or exchange, between the 

suspended and bed sediment incorporates the idea that sediment is continuously mixing as 

a result of deposition, erosion, and turbulence in the conduit. Although this mixing does 

not have any effect on the net erosion or deposition, it does affect the carbon content of the 

material suspended and the material on the bed. The mass of sediment exchanged in a time 

step (𝑋𝑋𝑖𝑖) was modeled by  

𝑋𝑋𝑖𝑖 = 𝑎𝑎𝑚𝑚 ∙ 𝑄𝑄𝑄𝑄𝑖𝑖,               (49) 

where, 𝑎𝑎𝑚𝑚 is the exchange rate between the surface and subsurface. Within this exchanged 

sediment, a portion will be organic carbon. The amount of organic material exchanged to 

the bed from the suspended sediment was calculated as 

𝑋𝑋𝑑𝑑𝑑𝑑→𝑈𝑈𝐸𝐸𝐷𝐷 = 𝑋𝑋𝑖𝑖 ∙ 𝑂𝑂𝐶𝐶𝑑𝑑𝑑𝑑%,              (50) 

where, 𝑂𝑂𝐶𝐶𝑑𝑑𝑑𝑑% is the organic carbon content of the suspended sediment (gC/100gSed). A 

mass of bed sediment will be swapped with an equal mass of suspended sediment, but with 



www.manaraa.com

 

79 
 

varying carbon densities. The amount of organic material exchanged from the bed to the 

suspended sediment was modeled as 

𝑋𝑋𝑈𝑈𝐸𝐸𝐷𝐷→𝑑𝑑𝑑𝑑 = 𝑋𝑋𝑖𝑖 ∙ 𝑂𝑂𝐶𝐶𝑈𝑈𝐸𝐸𝐷𝐷%,              (51) 

where, 𝑂𝑂𝐶𝐶𝑈𝑈𝐸𝐸𝐷𝐷% is the organic carbon content of the bed sediment (gC/100gSed).  

 The transformation of the three carbon pools was modeled using a zero-order 

decomposition function 

𝐷𝐷𝐸𝐸𝐶𝐶𝑑𝑑𝑂𝑂𝐶𝐶𝑖𝑖 = 𝑘𝑘𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙
𝑑𝑑𝑠𝑠𝑙𝑙𝑖𝑖𝑙𝑙𝑖𝑖
𝑑𝑑𝑠𝑠𝑠𝑠𝑎𝑎𝑙𝑙𝑖𝑖

+ 𝑘𝑘𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝑢𝑢
𝑑𝑑𝑙𝑙𝑖𝑖𝑝𝑝𝑝𝑝𝑏𝑏𝑝𝑝𝑖𝑖
𝑑𝑑𝑠𝑠𝑠𝑠𝑎𝑎𝑙𝑙𝑖𝑖

+ 𝑘𝑘𝑢𝑢𝑙𝑙𝑔𝑔𝑢𝑢𝑏𝑏
𝑑𝑑𝑎𝑎𝑙𝑙𝑎𝑎𝑎𝑎𝑏𝑏𝑖𝑖
𝑑𝑑𝑠𝑠𝑠𝑠𝑎𝑎𝑙𝑙𝑖𝑖

,          (52) 

where, 𝑘𝑘𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙 is the soil decomposition rate (d-1), 𝑄𝑄𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙𝑖𝑖 is the supply of soil organic carbon 

in the SFGL (kg), 𝑄𝑄𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙𝑖𝑖 is the supply of the SFGL (kg), 𝑘𝑘𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝑢𝑢 is the litter decomposition 

rate (d-1), 𝑄𝑄𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝑢𝑢𝑖𝑖 is the supply of litter organic carbon in the SFGL (kg), 𝑘𝑘𝑢𝑢𝑙𝑙𝑔𝑔𝑢𝑢𝑏𝑏 is the algae 

decomposition rate (d-1), and 𝑄𝑄𝑢𝑢𝑙𝑙𝑔𝑔𝑢𝑢𝑏𝑏𝑖𝑖 is the supply of algal carbon in the SFGL (kg).   

4.4.4 Model Inputs and Parameterization 

The sediment transport and carbon model was applied to the Cane Run karst 

system.  Turbidity and flow data were collected at 10-15 minute intervals and sediment 

organic carbon data were collected on a bi-weekly sampling routine. Inputs and parameters 

are literature derived or specified based on field observations. A list of model inputs and 

parameters is shown in Table 4-5. Figure 4-11 displays the layout of conduit cells, pirated 

sediment, and flow within the model. The sediment model for the coupled drainage 

network was modeled with the Groundwater Station (Cell 10) as the outlet due to the 

divergence of the surface and subsurface flow and sediment pathways. The carbon model 

was extended to Royal Spring (Cell 16) because of the feasibility of sample collection and 
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the inclusion of the entire subsurface karst conduit. There were no suspected additional 

sediment or carbon sources from the Groundwater Station to Royal Spring which allowed 

for extension of the model (Figure 4-11).  

Conduit bathymetry inputs were estimated using the existing measurements from 

the karst system. Bathymetry at the Groundwater Station was known from use of multiple 

qualitative tracer, Doppler sonar, and video techniques. The geometry at other cells was 

estimated based on model results that showed a net dynamic equilibrium with respect to 

erosion and deposition (Table 4-3). Frictional losses in the conduit were modeled using a 

Darcy-Weisbach friction factor calculated from the Energy Equation. Sediment particle 

size was estimated from collected distributions of sediment from inflowing tributaries. 

Sediment organic carbon values of the tributaries and outlets were measured using in situ 

trap samplers (Phillips et al., 2000). The percent algae in the agricultural streams was 

modeled using a distribution from a nearby agriculturally dominated watershed (Ford et 

al., 2015). The δ13C signatures of the soil organic carbon, algal carbon, and litter carbon 

were identified using published literature by Fox et al. (2010), Ford et al. (2015), and Acton 

et al. (2013), respectively. 

Parameters used for sediment and carbon model calibration were initially based on 

published literature results and adjusted to reflect the hydro-biogeochemical dynamics of 

the coupled surface-subsurface watershed. Several tributaries are present in the Cane Run 

system, and new field measurements as well as literature-reported measurements for the 

Lexington area were used to produce an empirical model of sediment influx from the 

tributaries (Coulter et al., 2004; Russo and Fox, 2012). The maximum supply of the SFGL 

was estimated by assuming that the neutrally buoyant mixture has a bulk density of 1000 



www.manaraa.com

 

81 
 

kg m-3 and that the SFGL reaches a maximum depth of 5 mm (Droppo and Stone, 1994; 

Stone and Droppo, 1994; Droppo and Amos, 2001).  The surface area of the SFGL within 

the conduit was assumed to blanket the entire bed.  The settling velocity of the fine 

sediment was estimated by solving Stoke’s Law iteratively and using the fall velocity of 

quartz spheres in water nomograph by Rouse (1937). Transport capacity coefficients are 

empirical and were adjusted as part of the calibration process (Dou, 1974; Ahmadi et al., 

2006; Yan et al., 2008; Guy et al., 2009; Madej et al., 2009). Excess shear was 

parameterized using existing theory for a one-dimensional simplification and relevant 

empirical literature.  The exponent in the erosion equation, b, was assumed to be 1 for all 

fluvial erosion sources, which agrees with the concept of erosion being a shear driven 

process and agrees with the assumption of a number of other studies (Hanson and Simon, 

2001; Sanford and Maa, 2001; Wynn et al., 2008; Simon et al., 2009). Erodibility and 

critical shear stress for these equations, a and τcr, was parameterized uniquely for each 

erosion source based on literature reported values and equations (Droppo and Amos, 2001; 

Hanson and Simon, 2001; Sanford and Maa, 2001; Simon and Thomas, 2002; Russo and 

Fox, 2012). Decomposition rates for fine litter detritus and algae were parameterized based 

on results from literature (Webster et al., 1999; Six and Jastrow, 2002; Ford and Fox, 2012). 

The decomposition rate of the soil organic carbon was calibrated based on field samples, 

lab analysis, and model results. The exchange rate was calibrated as necessary to fit 

modeled results to collected organic carbon data. 

4.4.5 Calibration and Validation 

Sediment model calibration and validation was performed by comparing collected 

suspended sediment data with simulated model results (Figure 4-1). Calibration parameters 
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for the sediment model included the transport capacity coefficients for low (𝐶𝐶𝑖𝑖𝑐𝑐𝑙𝑙𝑙𝑙𝑤𝑤) and 

high (𝐶𝐶𝑖𝑖𝑐𝑐ℎ𝑖𝑖𝑎𝑎ℎ) flows. Modeled and observed sediment fluxes in the conduit at the 

Groundwater Station were used as the basis for calibrating the transport coefficients. 

Parameters were estimated initially by values in the literature and then optimized to fit 

collected sediment concentration (TSS) and flow data. Statistical methods were also 

applied to calibrate model results with field observations including the coefficient of 

determination (R2) and the Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970). The 

statistics were applied to the measured vs modeled sediment fluxes at the prescribed model 

time step rather than time-integrated sediment yields providing for a more robust analysis 

of model performance. The sediment model calibration time period spanned 7 months 

(10/2011 – 05/2012) and the sediment model validation time period spanned 3 months 

(02/2013 – 05/2013).  

Sediment organic carbon model calibration and validation was performed by 

comparing collected SOC data with model carbon results (Figure 4-1). Calibration 

parameters for the carbon model included the decomposition rate of soil organic carbon 

(𝑘𝑘𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙) and the sediment exchange rate (𝑎𝑎𝑚𝑚). The carbon model was calibrated so that the 

mean of the modeled SOC results matched the mean of the collected SOC samples from 

Royal Spring. The carbon model calibration time period spanned 5 months (12/2012 – 

04/2013) and included 12 time-integrated SOC samples. The sediment model validation 

time period spanned 3 ½ months (04/2013 – 08/2013) and included 6 time-integrated SOC 

samples. 

For surface flow and sediment models, Donigian (2000) has recommended 

guidelines for calibration of the Nash-Sutcliffe efficiency; however, this model was applied 
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to a subsurface karst sediment transport model and the guidelines by Donigian were used 

as a general benchmark for model performance. The guidelines in Moriasi et al. (2007) 

state that Nash-Sutcliffe efficiency values between 0.0 and 1.0 are generally viewed as 

acceptable levels of performance. ASCE (1993) suggests the use of the Nash-Sutcliffe 

coefficient and it has become widely used in the field allowing for comparison of values 

between research studies.  The Nash-Sutcliffe coefficient (𝐸𝐸𝐼𝐼𝑑𝑑) was calculated as follows  

𝐸𝐸𝐼𝐼𝑑𝑑 = 1 −
∑ �𝑄𝑄𝑑𝑑𝑎𝑎𝑝𝑝𝑎𝑎𝑖𝑖−𝑄𝑄𝑚𝑚𝑙𝑙𝑑𝑑𝑏𝑏𝑙𝑙𝑖𝑖�

2𝑛𝑛
𝑖𝑖=1

∑ �𝑄𝑄𝑑𝑑𝑎𝑎𝑝𝑝𝑎𝑎𝑖𝑖−𝑄𝑄�𝑑𝑑𝑎𝑎𝑝𝑝𝑎𝑎�
2𝑛𝑛

𝑖𝑖=1

,                       (53) 

𝑄𝑄𝑚𝑚𝑜𝑜𝑑𝑑𝑏𝑏𝑙𝑙𝑖𝑖 is the modeled sediment discharge (kg s-1), 𝑄𝑄𝑑𝑑𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖 is the observed sediment 

discharge from data (kg s-1), and 𝑄𝑄�𝑑𝑑𝑢𝑢𝑖𝑖𝑢𝑢 is the average observed sediment discharge             

(kg s-1). 𝐸𝐸𝐼𝐼𝑑𝑑 compares the variance between the observed values and the modeled values 

in the numerator and the variance between the observed values and the average observed 

value of the dataset in the denominator.  Nash-Sutcliffe values closer to an efficiency of 1 

indicate a near-perfect match of modeled to observed data. An efficiency of 0 indicates that 

a model is as accurate as the average observed value with regards to predicting future 

values. Efficiencies less than one indicate that a model is less accurate than using the 

average observed value as a prediction tool.  

4.4.6 Sensitivity and Uncertainty Analysis 

Model sensitivity was performed for a number of model parameters such as the 

transport coefficients, settling depth coefficient, exchange rate, decomposition rates, and 

source critical shear stresses. Initial conditions for the model’s calibration parameters were 

based on values found in the literature (Table 4-5).  These parameters were then varied 

individually through a range of values and the effects on net erosion-deposition, sediment 
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yield, and carbon content were monitored to see which parameters had the greatest effect 

on results and in turn were the most sensitive. Parameters were varied from their minimum 

value in literature, their median value in literature, and their maximum value in literature. 

The relative change on the results was also investigated. 

A number of parameters and inputs possessed statistical variability and uncertainty 

that was incorporated into the model. After a sufficient number of field data were collected, 

probability density functions were fit to observed statistical distributions. Applying 

uncertainty allowed the model to incorporate the natural variability of many inputs and 

parameters as well as more accurately representing the stochastic nature of some physical 

and biogeochemical processes.  Descriptive statistics such as mean and standard deviation, 

were estimated using data collected from the field and literature-based results. For 

example, the δ13C isotopic ratio for the algal source would be modeled as 

𝐷𝐷�𝑋𝑋𝑢𝑢𝑙𝑙𝑔𝑔� → 𝑁𝑁�𝜇𝜇𝑢𝑢𝑙𝑙𝑔𝑔,𝜎𝜎𝑢𝑢𝑙𝑙𝑔𝑔2 �,             (54) 

where, 𝑋𝑋𝑢𝑢𝑙𝑙𝑔𝑔 is the distribution of the mean, 𝜇𝜇𝑢𝑢𝑙𝑙𝑔𝑔 is the mean of the source population, and 

𝜎𝜎𝑢𝑢𝑙𝑙𝑔𝑔2  is the variance of the source population. The mean and standard deviations of the 

carbon and isotopic signature inputs to the model are shown in Table 4-6. The two tributary 

sources locations, Urban Trib and Ag Trib, were subdivided into three separate carbon 

pools: soil, litter, and algae. Each carbon pool had its own mean and standard deviation for 

the δ13C signature based off of reported values in the literature (Fox et al., 2010; Acton et 

al., 2013; Ford et al., 2015). The isotopic signature and organic content of the bulk samples 

from Urban Trib and Ag Trib were collected from field and lab methods.   
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Randomization of carbon source inputs was performed using Monte-Carlo 

simulations. Sediment source fingerprinting was applied by taking sediment from the outlet 

of a system and estimating the contribution of each source to the total amount at the outlet. 

10,000 realizations were performed for each of the eight different fixed percent algae 

(𝑃𝑃𝑢𝑢𝑙𝑙𝑔𝑔𝑢𝑢𝑏𝑏) values (0, 5, 10, 15, 17.81, 20, 30, and 40%).  Each realization was independent 

of the prior and the inputs to the model were randomly selected from their respective 

distributions. The use of an uncertainty analysis also allowed error bounds to be placed on 

results.   

4.4.7 High Performance Computing 

Simulation of the coupled sediment and carbon model over the two year 

investigation period required extensive computational resources. Numerical modeling and 

statistical analysis was performed using the University of Kentucky’s Lipscomb High 

Performance Computing Cluster. The cluster is rated at over 140 teraflops including all 

CPUs and GPUs. The system allows for batch scripting and the allocation of individual 

processors to serial jobs for solving several realizations of the model concurrently thus 

reducing computation time. In this study, 10,000 total realizations of the model were 

performed over 16 different processing cores which reduced the computational time by 

hundreds of hours.  
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Table 4-1: Flow rate relationships between stream gages in Cane Run Watershed 

Site Relationship* Equation R² 
Berea Road  Lexmark 𝑄𝑄𝐿𝐿𝐸𝐸𝐿𝐿 = 0.28 ∙ 𝑄𝑄𝑈𝑈𝐸𝐸𝑅𝑅 + 2.72 0.78 
Berea Road  Spindletop 𝑄𝑄𝑑𝑑𝑃𝑃𝐼𝐼𝐼𝐼 = 0.26 ∙ 𝑄𝑄𝑈𝑈𝐸𝐸𝑅𝑅 − 1.10 0.94 
Berea Road  Lisle Road 𝑄𝑄𝐿𝐿𝐼𝐼𝑑𝑑𝐿𝐿𝐸𝐸 = 0.62 ∙ 𝑄𝑄𝑈𝑈𝐸𝐸𝑅𝑅 + 2.50 0.89 
Citation Blvd  Lexmark 𝑄𝑄𝐿𝐿𝐸𝐸𝐿𝐿 = 0.72 ∙ 𝑄𝑄𝐶𝐶𝐼𝐼𝑇𝑇 + 0.79 0.91 
Citation Blvd  Spindletop 𝑄𝑄𝑑𝑑𝑃𝑃𝐼𝐼𝐼𝐼 = 0.33 ∙ 𝑄𝑄𝐶𝐶𝐼𝐼𝑇𝑇 − 0.75 0.69 
Citation Blvd  Lisle Road 𝑄𝑄𝐿𝐿𝐼𝐼𝑑𝑑𝐿𝐿𝐸𝐸 = 1.12 ∙ 𝑄𝑄𝐶𝐶𝐼𝐼𝑇𝑇 − 0.65 0.73 

 
*Lexmark is “Urban Trib”, Spindletop is “Ag Trib”, Lisle Road is “Surface Outflow”, 
Citation Blvd and Berea Road are other stream gages along the main Cane Run Creek 
channel used to fill in missing data at Urban Trib, Ag Trib, and Surface Outflow.  

 

 

 

 

 

 

Table 4-2: Relationships between sediment concentration, 𝐶𝐶𝑠𝑠𝑠𝑠, and stream flow rate, 𝑄𝑄 

Site Equation R² 
Urban Trib 𝐶𝐶𝑠𝑠𝑠𝑠 = 73.7�0.8(1.3) + 0.2(0.75)��37,495�1− 𝑎𝑎−1.9×10−5𝑄𝑄�� − 4.2 0.48 

Ag Trib 𝐶𝐶𝑠𝑠𝑠𝑠 = 0.5�0.2(1.3) + 0.8(0.75)�[275(1− 𝑎𝑎−0.75𝑄𝑄)] + 21.1 0.55 
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Table 4-3: Conduit Bathymetry, QSS Inflow, and Land Use Information for Model Cells 

Cell* Height 
(m) 

Width 
(m) 

Surface 
Area (m2) 

Swallet 
Density 

(%) 

Urban 
Land-use 

(%) 

Ag  
Land-use 

(%) 
1 0.833 5.754 5754 9 80 20 
2 0.840 5.805 5805 6 80 20 
3 0.848 5.857 5857 11 70 30 
4 0.855 5.909 5909 10 60 40 
5 0.863 5.961 5961 7 50 50 
6 0.870 6.013 6013 6 40 60 
7 0.878 6.065 6065 10 30 70 
8 0.900 6.220 6220 14 20 80 
9 0.900 6.220 6220 12 10 90 
10 0.900 6.220 6220 15 0 100 
11 0.900 6.220 6220 

No surface sediment diverted to the 
conduit in Cells 11 – 16 

12 0.900 6.220 6220 
13 0.900 6.220 6220 
14 0.900 6.220 6220 
15 0.900 6.220 6220 
16 0.900 6.220 6220 

 
*Refers to the spatial cell within the conduit as seen on Figure 4-11.   

 

Table 4-4: Un-mixing Results for Means of Data Inputs using Carbon Stable Isotope 

URBAN 
 Fraction (%) δ¹³C (‰) 

Soil 48.4 -25.0 
Litter 51.6 -27.6 
Algae 0.0 -37.7 
   

AGRICULTURAL 
 Fraction (%) δ¹³C (‰) 

Soil 72.7 -25.0 
Algae 17.8 -37.7 
Litter 9.5 -27.6 
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Table 4-5: Inputs and parameter values for sediment transport model 

Symbol  Description Value Unit 

𝐿𝐿 Channel length 1x104 m 
D Equivalent diameter of conduit 2.13 m 
Δ𝐶𝐶 Temporal step 3600 s 
𝑓𝑓 Darcy friction factor 0.422 unitless 
𝑘𝑘𝑝𝑝 Settling depth coefficient 0.5 unitless 
𝑄𝑄𝑢𝑢𝑜𝑜𝑢𝑢𝑖𝑖𝑑𝑑𝑢𝑢𝑢𝑢𝑏𝑏 Boundary between low and high flows 1 m3 s-1 

𝑑𝑑𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙 Initial depth of SFGL sediment in the conduit 0.003 m 
𝑑𝑑𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙𝑚𝑚𝑎𝑎𝑚𝑚  Maximum depth of SFGL sediment 0.005 m 
𝑄𝑄𝑢𝑢𝑏𝑏𝑑𝑑 Initial supply of bed sediments in the conduit 5.4x10-6 kg 
𝜌𝜌𝑤𝑤𝑢𝑢𝑖𝑖𝑏𝑏𝑢𝑢 Density of fluid 1x103 kg m-3 
𝜌𝜌𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙 Bulk density of SFGL sediments 1x103 kg m-3 
𝜌𝜌𝑢𝑢𝑏𝑏𝑑𝑑 Bulk density of bed sediments 1.5x103 kg m-3 
𝜔𝜔𝑠𝑠 Mean settling velocity of suspended material 8x10-5 m s-1 

𝐶𝐶𝑖𝑖𝑐𝑐𝑙𝑙𝑙𝑙𝑤𝑤 Transport capacity coefficient for low flows 2.28x10-5 m1/2.s2 kg-1/2 
𝐶𝐶𝑖𝑖𝑐𝑐ℎ𝑖𝑖𝑎𝑎ℎ Transport capacity coefficient for high flows 1.77x10-6 m1/2.s2 kg-1/2 
𝑄𝑄𝑄𝑄0 Initial suspended sediment  0 kg 
𝜏𝜏𝑐𝑐𝑢𝑢𝑠𝑠𝑠𝑠𝑎𝑎𝑙𝑙 Critical shear of the SFGL source 0.05 Pa 
𝜏𝜏𝑐𝑐𝑢𝑢𝑏𝑏𝑏𝑏𝑑𝑑 Critical shear of the bed source 1 Pa 
𝑏𝑏𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙 Erodibility exponent of the SFGL source 1 unitless 
𝑏𝑏𝑢𝑢𝑏𝑏𝑑𝑑 Erodibility exponent of the bed source 1 unitless 
𝑎𝑎𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙 Erodibility of the SFGL source 8.94x10-4 kg Pa-1 m-2 s-1 
𝑎𝑎𝑢𝑢𝑏𝑏𝑑𝑑 Erodibility of the bed source  2.12x10-4 kg Pa-1 m-2 s-1 
𝑄𝑄𝑂𝑂𝐶𝐶𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖𝑙𝑙𝑙𝑙𝑤𝑤 Carbon content of urban sediment (low flows) 5.83 gC/100gSed 
𝑄𝑄𝑂𝑂𝐶𝐶𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖ℎ𝑖𝑖𝑎𝑎ℎ Carbon content of urban sediment (high flows) 4.37 gC/100gSed 
𝑄𝑄𝑂𝑂𝐶𝐶𝑢𝑢𝑔𝑔 Carbon content of agriculture sediment 3.83 gC/100gSed 
𝑎𝑎𝑚𝑚 Exchange rate for sediment mixing 0.025 unitless 
𝑘𝑘𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙 Decomposition rate of soil carbon -1.0x10-4 d-1 

𝑘𝑘𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝑢𝑢 Decomposition rate of litter carbon -1.3x10-3 d-1 
𝑘𝑘𝑢𝑢𝑙𝑙𝑔𝑔𝑢𝑢𝑏𝑏 Decomposition rate of algal carbon -1.3x10-3 d-1 
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Table 4-6: Carbon and δ13C Uncertainty Analysis Inputs 

Sampling Site  δ¹³C (‰) SOC (%) 

Lexmark (Urban Trib) Mean -26.36 5.70 
Std Dev 0.67 1.07 

Spindletop (Ag Trib) Mean -27.51 3.83 
Std Dev 0.44 0.26 

Conduit (Groundwater 
Station) 

Mean -26.61 3.35 
Std Dev 0.86 0.60 

Carbon Pool  δ¹³C  

Soil Mean -25.00  
Std Dev 0.64  

Litter Mean -27.63  
Std Dev 0.54  

Algae Mean -37.71  
Std Dev 5.51  

Percent Algae, 𝑷𝑷𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂    
0, 5, 10, 15, 20, 30, 40    
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Figure 4-1: Fluviokarst Sediment and Carbon Transport Calibration Method. STAGE 1: 

model preparation. Sediment pirated from tributaries (𝑄𝑄𝑑𝑑𝑑𝑑), conduit flow rate (𝑄𝑄𝑖𝑖), and 

hydraulic and hydrologic inputs were supplied to the Sediment Transport Model. STAGE 

2: sediment calibration. Transport coefficients (𝐶𝐶𝑖𝑖𝑐𝑐) are adjusted so that model results 

reflect TSS data. STAGE 3: carbon calibration. Sediment transport model results, carbon 

source unmixing, decomposition rates (𝑘𝑘), and percent algae (%𝑢𝑢𝑙𝑙𝑔𝑔𝑢𝑢𝑏𝑏) were used as inputs 

to the Carbon Model which was calibrated by adjusting the soil decomposition rate (𝑘𝑘𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙) 

and sediment exchange rate (𝑎𝑎𝑚𝑚) to reflect SOC data.  
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Figure 4-2: TSS vs Turbidity Relationship for Groundwater Station Samples 
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Figure 4-3: Velocity and Concentration Profiles in Surface Streams 
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Figure 4-4: Velocity and Concentration Profiles in Karst Conduit 
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Figure 4-5: Particle Size Distributions a) urban tributary, b) agriculture tributary, c) surface outflow, d) subsurface outflow. (1) and (2) 

indicates multiple samples taken on same date. 

a) b) 

c) d) 
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Figure 4-6: Sediment Trap Sampler (Phillips et al., 2000) 

 

 

  

 

Figure 4-7: Weekly Max Flows Royal Spring vs Conduit (Groundwater Station) 
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Figure 4-8: Modeling Framework for Coupled Surface-Subsurface Model 
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Figure 4-9: Conceptual Water Budget for Coupled Drainage Network 
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Figure 4-10: Friction Factor vs Conduit Velocity  
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Figure 4-11: Flow and Sediment into Subsurface Conduit Conceptualization (GW = Groundwater Station, RS = Royal Spring). 

Conduit geometry increases from Cell 1 – 10 then remains constant from Cell 10 – 16.   

GW RS 

1 km 
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Chapter 5 Results 

5.1 Model Evaluation 

5.1.1 Water 

Water flow rates within the coupled surface-subsurface drainage network were 

monitored over a two year period at inflow and outflow locations (see Fig 3-1). The 

difference between the upscaled inflows from the tributaries and the outflows from the 

surface channel and subsurface conduit over the model period was 4.48%.  The data-driven 

results of water flowrates show that the upscaled inflows to the system nearly equal the 

surface and subsurface outflows supports the choice of the streams selected as 

representative tributaries. In addition, the data results reinforce the idea that Royal Spring 

is a mature hydro-geomorphologic system dominated by low storage, high transmissivity 

conduits. Mature karst systems are characterized by well-developed conduit networks that 

transport flow at speeds that are orders of magnitude greater than porous media flow or 

fracture matrix flow (Clemens et al., 1997; Waltham and Fookes, 2003). 

5.1.2 Sediment 

The results of the sediment transport model for the calibration and validation 

periods are shown in Figure 5-1. The model tended to underestimate the initial sediment 

peak during hydrologic events. Baseflow conditions were reflected well in the model 

suggesting that the low flow transport capacity coefficient represented the sediment 

transport dynamics in the conduit adequately.  The fit for the validation time period is 

closer than that of the calibration period as the Nash-Sutcliffe efficiency for the calibration 

and validation periods is 0.45 and 0.62, respectively. The coefficient of determination for 

the calibration and validation periods is 0.50 and 0.54, respectively. The R2 and Nash-
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Sutcliffe efficiencies for calibration and validation perform satisfactorily when compared 

to other literature particularly when considering that most calibration is done on daily and 

monthly time steps (Moriasi et al., 2007).  For the current study, the time step used was 

one hour. Yuan et al. (2001) showed that statistical evaluation values perform worse as 

time steps are shortened.  

 A sensitivity analysis was performed on the sediment transport model to evaluate 

how model parameters effect the sediment yield out of the watershed. Figure 5-2 shows a 

graph of parameter sensitivity and change in sediment yield. Table 5-1 gives exact values 

of minimum, optimal, and maximum parameter values as well as percent change in 

sediment yield with the corresponding value used in the calculation. The minimum and 

maximum values are literature derived and the optimal values are those calibrated to the 

model. The transport coefficients and the settling depth coefficient were the sensitive 

parameters in this study. The sensitivity of transport coefficients has been recognized in 

other fine sediment models (Russo and Fox, 2012).   

5.1.3 Sediment Organic Carbon 

As mentioned in the methods, calibration of the sediment carbon model was 

performed through adjustment of decomposition and sediment exchange rates. Calibrated 

model results showed that the decomposition rate of soil was one order of magnitude 

smaller than that of the algal and litter carbon pools (𝑘𝑘𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙 = 0.0001 d-1) (Table 5-2), but 

very near the maximum end of soil decomposition rates published in other studies (Alvarez 

and Guerrero, 2000; Ford and Fox, 2012). Calibrated model results show that the amount 

of sediment in suspension within the conduit that is exchanged with bed sediment at any 

given time step is 2.5%. The effect of this carbon exchange was realized through the 
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variation in exported carbon flux by altering the carbon density of suspended sediments 

without changing the mass of sediment discharged.  

Figure 5-3 shows calibration and validation results of the sediment carbon model 

and the measured sediment carbon results at the subsurface conduit springhead.  The time 

series shows that all but one of the collected samples falls within range of the modeled 

results.  The means of the modeled and measured data were used as a calibration goal due 

to the high variability and uncertainty related to carbon data. The mean sediment carbon 

density of the measured data for the calibration period was 3.36%. The results for the 

modeled sediment carbon mean were 3.36%.  The range of SOC measured values was 

[2.45%, 4.15%] whereas the range of the modeled values was [2.88%, 3.77%]. For the 

validation period the measured mean of the sediment carbon data was 3.31% and the 

modeled mean was 3.65%.  The range of SOC measured values during the validation period 

was [2.21%, 4.10%] whereas the range of the modeled values was [3.42%, 4.03%].  Results 

show that the sediment carbon data bounds the model results well suggesting confidence 

that the mean behavior of the physical and biological processes in the karst conduit are 

represented by the model.  For a number of occurrences, the sediment carbon model under 

predicts the range of variability exhibited by the sediment carbon data results (see Fig 5-3) 

reflecting the mean representation of erosion and decomposition in the model (e.g., 

constant rates over grid cells that are approximately one kilometer in length).  For example, 

it is realized that fluvial sediment carbon data can be highly variable (Ford et al., 2015) 

reflecting episodic transport of eroded sediment (Fox and Papanicolaou, 2008) and the 

spatial variability of decomposition hot spots in fluvial systems (Battin et al., 2003).  

Nevertheless, the fact that the data range is on the same order as the model results adds 
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confidence to the results and highlights that the model is able to reflect the mixing of new 

sediment carbon transported to the subsurface and resuspended sediment carbon that was 

temporarily stored in the bed.  

Table 5-2 and Figure 5-4 display the parameter sensitivity and change in average 

suspended sediment organic carbon content. The minimum and maximum parameter 

values are literature derived, when applicable, and the optimal values are those calibrated 

to the model. The carbon model was not overly sensitivity to any of the five parameters 

tested. The most sensitive parameters were the litter decomposition rate and the exchange 

rate. The litter decomposition rate showed sensitivity because of the high contribution of 

litter carbon to the system and the relatively high rate of decomposition of litter compared 

to the other large carbon source, soil. The sensitivity in the exchange rate was manifested 

in the overall carbon content of the conduit bed being increased with an increase in 

exchange rate.  In this manner, a more thorough mixing of suspended and bed sediment 

occurs which has the result of dampening the “flush” effect of incoming surface sediment 

being immediately discharged through the conduit without adequate mixing. The low 

variability in the organic content of suspended sediment within the conduit was a result of 

two processes: 1) similar decomposition rates for autochthonous and litter carbon and 2) 

the soil organic carbon contribution remaining relatively stable regardless of percent algae 

in agricultural streams 

5.1.4 Sensitivity of Palgae 

During the sensitivity analysis of the sediment carbon sub-model, the model input 

𝑃𝑃𝑢𝑢𝑙𝑙𝑔𝑔𝑢𝑢𝑏𝑏 was also varied due to our lack of certainty with respect to this input and due to the 

fact that adjustment of 𝑃𝑃𝑢𝑢𝑙𝑙𝑔𝑔𝑢𝑢𝑏𝑏 in turn impacted the isotope un-mixing analysis for tributary 



www.manaraa.com

 

104 
 

sources. Table 5-3 provides the Monte Carlo simulation results for the carbon un-mixing 

process at seven fixed algae percentages. Litter and algae percent contributions in the 

agricultural network are inversely proportional with percent litter carbon decreasing with 

rising percent algae. Soil carbon percent has a non-linear relationship with percent algae 

when considering agriculture sources. Figure 5-5 also displays how the percent of algae in 

transported sediment carbon affects source contribution from the three carbon pools.  The 

variation in the urban soil and litter source contributions can be explained by the fact that 

the random draw for the δ13C signature of algae can potentially make the solution matrix 

non-converging thus requiring another draw that would slightly change the modeled mean 

and standard deviation from their respective sources. However, in urban soil, this 

difference was less than 5% over a 40% range of percent algae.  

Table 5-4 provides the uncertainty results for the sediment carbon samples collected 

during the validation and calibration time periods. The modeled results show very little 

variation in the carbon content of suspended sediment. The low variability is attributed to 

the surface sediment thoroughly mixing with conduit bed sediment before discharging at 

the springhead.  

5.2 Temporal and Spatial Distributions of Water, Sediment, and Sediment Carbon 

5.2.1 Water 

Figure 5-6a and 5-6b displays the water inflows into the fluvial system from both 

the urban tributary and the agricultural tributary. The urban tributary has greater peaks and 

was generally much more active throughout the two year period. The peak flow for the 

urban tributary during the monitoring period was 25 m3 s-1 in July 2013. The urban tributary 
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was more active due to the high percentage of impervious areas contributing runoff from 

downtown Lexington. The agriculture tributary had relatively low flows attributed to 

reduced runoff primarily due to the infiltration of rainfall into the soil and epikarst.  

The surface and subsurface outflows from the system are shown in Figure 5-6c and 

5-6d.  The surface stream outlet of the drainage network had a similar behavior to that of 

the tributaries in that it was activated primarily during hydrologic events and had relatively 

short-lived hydrographs due to karst features pirating streamflow. Peak stormflow in the 

surface streams during large hydrologic events can often times be orders of magnitude 

greater than baseflow, which is consistent with surface stream hydrology (Gupta, 2008, p. 

349).  The contrasting data from the phreatic karst conduit shows that there was sustained, 

year round flow at the conduit.  Peak flows in the conduit are much more limited in their 

extremes and the variability of flow in the conduit was low relative to the surface streams. 

Flow rate in the surface stream was highly variable and ranges from 0 to 25 m3 s-1 while 

flow in the conduit never exceeds 3 m3 s-1.  These results are due to a subsurface hydraulic 

dam near the primary springhead that constrains the maximum water conveyance of the 

conduit.  The primary springhead allowing flow out of the conduit is 6.5 meters above the 

minimum conduit elevation. Well stage data from the subsurface conduit and surrounding 

karst aquifer shows that during very low flow conditions (conduit velocity ≈ 0) the conduit 

remains entirely phreatic (see Figure 5-7).  The mean conduit velocity was 0.124 (±0.110) 

m s-1. 

5.2.2 Sediment 

Figure 5-8 provides the suspended sediment discharge for the urban and agricultural 

tributaries feeding into the fluviokarst network. Sediment flux in urban streams was almost 



www.manaraa.com

 

106 
 

always greater than the corresponding flux in agricultural tributaries. The prevalence of 

impermeable surfaces near heavily-urbanized Lexington, KY results attributes to the 

observed high flows and erosion rates (Hollis, 1975; Konrad, 2003). High infiltration rates 

and vegetative cover provided protection for agricultural sediment and in turn reduce 

erosion and sediment flux (El-Swaify, 1994).  

Figure 5-9 shows the modeled suspended sediment flux out of the system by the 

subsurface karst conduit. Results from the collected sediment data in the conduit are in 

contrast with that of the surface streams. The peak sediment discharge within the conduit 

was 0.21 kg s-1, two orders of magnitude smaller than the urban surface tributary sediment 

discharge of 29.73 kg s-1.  Unlike sediment concentration peaks in surface streams, which 

are caused by the perturbation of undisturbed sediment and occur prior to the peak of the 

storm flow hydrograph (Bača, 2008), data results show that turbidity spikes in the 

subsurface are maintained for longer durations and last through the peak of a hydrologic 

event. Sustained sediment concentration results in high yields of sediment and is attributed 

to both the perturbation of latent conduit bed sediment and the introduction of pirated 

surface sediment.  Additionally, during baseflow conditions when the surface channel runs 

dry, water in the subsurface conduit continues to erode conduit bed material and export 

sediment from the coupled drainage network.  

The spatial evolution of the conduit bed is shown in Figure 5-10. Bed depths were 

modeled throughout the entire longitudinal extent of the conduit and four locations are 

presented in the figure to show the changing dynamics of the subsurface. Cells 4, 8, and 12 

were responsive to individual storm events with significant deposition or erosion occurring 

depending on factors such as cell geometry, flow rate, and suspended sediment influx. Cell 
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16 (the conduit outlet) is located at the outlet of the conveyor belt portion of the conduit 

and shows little variability in bed depth indicating that storm-derived surface sediment is 

trapped in the subsurface and gradually exported. 

5.2.3 Sediment Organic Carbon 

Sediment carbon yield at the springhead tends to be fairly constant in part due to 

the phreatic nature of the karst conduit which provides continuous flow for most of the two 

year period allowing for erosion and transport processes to occur in the subsurface (Figure 

5-11).  The shape of the sediment organic carbon flux very closely resembles that of the 

suspended sediment discharge and contains peaks during storms and subsequent smaller 

loads during baseflow.  

Urban and agriculture tributary data averaged 4.77 (±1.24) gC 100g-1 sediment 

while the downstream subsurface conduit averaged 3.35 (±0.53) gC 100g-1 sediment. 

Modeling results show that the average carbon content of suspended sediments exported 

out of the subsurface karst network, over the two year period, was 3.32 (±0.43) gC 100g-1. 

The carbon density differences are worthy of note given that temporary storage of sediment 

in the drainage network results in a decrease in sediment stored carbon. The inflow and 

outflow differences in the carbon data and model results are attributed to the decomposition 

process.  Sediment organic carbon becomes temporarily trapped in the subsurface due to 

the limited transport capabilities of the karst conduit. During this temporary fate, it is 

plausible that heterotrophic bacteria oxidize the organic carbon associated with fine 

sediment and respire carbon dioxide (CO2). During transport within the phreatic conduit, 

data results show that nearly 30% of the sediment organic carbon was lost while modeling 

results during the same time period show a loss of 27%. 
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A further inspection of the suspended and bed organic carbon contents shows the 

dynamics and biologic processes in the subsurface conduit. Figure 5-12 shows the changes 

in organic carbon in the suspended and bed sediment at the Groundwater Station. Initially 

carbon rich sediment was pirated from the surface and injected into the subsurface conduit 

causing a rise in carbon content of the suspended sediment within the conduit. After 

deposition and mixing the suspended sediment percentage slowly decreases until it was in 

near equilibrium with the carbon content of the bed.  

Figure 5-13 shows the composition of the Groundwater Station conduit bed with 

respect to how the fraction of each carbon pool changes with time. Soil organic carbon 

dominates the location due to the slow decomposition rate of the recalcitrant carbon and 

also because of the large soil source from both urban and agricultural lands.  Figure 5-14 

shows the fractioning of the suspended SOC at Royal Spring between the three carbon 

sources. The proportions of each source in the suspended sediment slurry can vary greatly, 

but tend to approach a mean which is representative of the results from the un-mixing 

process. An 8 month dry period centered in the middle of the investigation period had low 

carbon yields. However, during this dry period the subsurface conduit was biologically 

active and turned over organic carbon and maintained a steady flux of CO2 production 

(Figure 5-15).  

5.3 Long-term Budgets of Water, Sediment, and Sediment Carbon 

5.3.1 Water 

The water budget for the two year period shows that there was a near-equilibrium 

in the water mass balance of the system (Figure 5-16). The water budget for the fluviokarst 
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watershed was closed to within 4.48%.  During hydrologic events, the karst aquifer (e.g. 

the epikarst, matrix, fractures, and conduits) fills up and drains water in a multi-stage 

process with different conveyance rates ranging from velocities resembling surface 

channels in conduit flow to slower Darcian groundwater flow in the rock matrix. The 

phreatic nature of the conduit due to the downstream restriction on the conduit flow 

dampens the magnitude of the water flowrate that can be conveyed during high flow events. 

During baseflow conditions, the conduit drains water that has been stored either in the 

epikarst or the unsaturated zone. The maturity of the karst system and prevalence of 

secondary and tertiary porosity attributes to the low water storage of the watershed. 76% 

of the water flowing out of the coupled network was via the karst conduit. 

5.3.2 Sediment 

Figure 5-17 shows the annual sediment budget for the Cane Run and Royal Springs 

karst network.  Suspended sediment was delivered to the primary surface channel by flow 

from the many tributaries along Cane Run Creek. Swallets lining the main corridor of the 

surface channel intercept flow and sediment and divert them to the subsurface.  Sediment 

pirated from the surface was injected into the subsurface where it was either deposited or 

flushed through the system. Over the entire study period, the net sediment diverted to the 

subsurface (11.6% of the tributary-produced sediment) was much lower than the net water 

drained by the conduits (76% of total water outflow). The contrast between the amount of 

water and sediment exported is a result attributed to two processes: 1) the majority of the 

tributary-produced sediment remains stored within the surface watershed after conduit 

reaches capacity flow and swallets are overtopped and 2) the conduit drains flow from the 
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fracture and matrix network surrounding the conduit which provide large amounts of 

baseflow with very low sediment concentrations even when the surface streams run dry. 

The surface tributaries produce 3,090 t of sediment each year of which 272 t y-1 are 

exported by the conduit.  During the period in this study, there was a net deposition of 

sediment (299 t y-1) that exceeds the erosion (212 t y-1) which was attributed to a very 

hydrologically active summer period with high sediment loads that were trapped by the 

subsurface conduit. However, we speculate that the conduit is in a long-term net-

equilibrium due to the fact that erosion and deposition are very similar and fluid energy is 

fairly consistent in the conduit (see Fig 5-2b). Further evidence of the ability of the karst 

conduit to limit transport capabilities was evidenced by the observation that sediment 

deposition in the conduit was very near the amount of sediment diverted from the surface.  

5.3.3 Sediment Organic Carbon 

A carbon budget was performed for the coupled surface-subsurface network to 

estimate changes and transformations of carbon during temporary fate and transport within 

the fluviokarst system. Figure 5-18 shows the yearly carbon budget for the Cane Run and 

Royal Springs karst network. Of the total amount of SOC introduced to the surface system 

from tributaries, 10.4% was pirated into the subsurface conduit by swallets and other karst 

features. The surface tributaries produce 157.3 tC y-1 of which 16.9 tC y-1 was pirated by 

the subsurface. Once introduced into the karst environment the phreatic nature of the 

conduit acts to temporarily trap the pirated sediment.  The highly active exchange between 

the high quality tributary carbon and the depleted conduit bed carbon was shown when 

comparing the mass of SOC pirated with the quantity of SOC deposited to the conduit bed, 

16.3 tC y-1 and 16.9 tC y-1, respectively. The deposition of SOC being larger than the influx 
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of SOC suggests that most of the fresh carbon was mixed temporarily with the subsurface 

sediment and decomposition and transformation occurs prior to the SOC being eroded and 

transported out of the system. The amount of organic carbon exchanged between the 

conduit and the water column during net-zero erosion/deposition indicates that suspended 

sediment with greater carbon densities are more readily assimilated into the subsurface 

than otherwise expected. Modeling results also show that an average of 0.05 tCy-1km-2 was 

decomposed from the organic state and as a result 0.18 tCO2y-1km-2 was degassed by 

conduit sediments.  
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Table 5-1: Sensitivity Analysis Percent Change in Sediment Yield (SY) 

     % Change, SY (t) 
Parameter Units Min Optimal Max Min Max 
𝑘𝑘𝑝𝑝 unitless 0.0001 0.5 0.5 -33 0 
𝐶𝐶𝑖𝑖𝑐𝑐𝑙𝑙𝑙𝑙𝑤𝑤 unitless 1.0x10-6 2.3x10-6 5.0x10-5 -54 67 
𝐶𝐶𝑖𝑖𝑐𝑐ℎ𝑖𝑖𝑔𝑔ℎ unitless 1.8x10-7 1.8x10-6 5.0x10-6 -22 45 
𝑤𝑤𝑠𝑠 m s-1 4.5x10-5 8.0x10-5 4.5x10-4 15 -30 
𝜏𝜏𝑐𝑐𝑢𝑢𝑖𝑖𝑖𝑖𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙 N m-2 0.024 0.05 0.8 0 -3 
𝜏𝜏𝑐𝑐𝑢𝑢𝑖𝑖𝑖𝑖𝑢𝑢𝑏𝑏𝑑𝑑 N m-2 0.3 1.0 20 0 0 
𝑑𝑑𝑠𝑠𝑓𝑓𝑔𝑔𝑙𝑙𝑚𝑚𝑢𝑢𝑚𝑚 m 0.001 0.005 0.01 -2 0 

 

 

 

 

Table 5-2: Sensitivity Analysis Percent Change in average Suspended Sediment SOC% 

 
 

   
% Change, average 

SS SOC 
Parameter Units Min Optimal Max Min Max 
𝑃𝑃𝑢𝑢𝑙𝑙𝑔𝑔𝑢𝑢𝑏𝑏 unitless 0 0.178 0.4 -3% -1% 
𝑘𝑘𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙 d-1 -2.6x10-5 -1.0x10-4 -2.3x10-4 1% -2% 
𝑘𝑘𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏𝑢𝑢 d-1 -2.3x10-4 -1.3x10-3 -8.0x10-3 9% -16% 
𝑘𝑘𝑢𝑢𝑙𝑙𝑔𝑔𝑢𝑢𝑏𝑏 d-1 -2.3x10-4 -1.3x10-3 -8.0x10-3 2% -5% 
𝑎𝑎𝑚𝑚 unitless 0 0.025 0.5 5% -11% 
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Table 5-3: Carbon Source Contribution for Fixed Algae Percent using Monte Carlo 

Simulation (n = 10,000) 

Fixed Algae 
(%) 

Urban (%) Agriculture (%) 
Soil Litter Soil Litter Algae 

0.0 52.0 48.0 21.7 78.3 0.0 
5.0 49.9 50.1 31.6 63.4 5.0 

10.0 48.9 51.1 43.2 46.8 10.0 
15.0 47.7 52.3 49.0 36.0 15.0 
20.0 46.5 53.5 49.0 31.0 20.0 
30.0 46.3 53.7 42.7 27.3 30.0 
40.0 47.1 52.9 35.5 24.5 40.0 
 

 

Table 5-4: Carbon Model Calibration and Validation Uncertainty using Monte Carlo 

Simulation (n = 10,000) 

 
Calibration 

 
Validation 

Algae (%) Mean 
SOC (%) 

StDev 
(%) 

 Mean 
SOC (%) 

StDev 
(%) 

0.00 3.27 0.01 
 

3.56 0.01  

5.00 3.30 0.01 
 

3.59 0.01  

10.00 3.34 0.01 
 

3.63 0.01  

15.00 3.35 0.01 
 

3.64 0.01  

17.81 3.35 0.01 
 

3.65 0.01  

20.00 3.35 0.01 
 

3.64 0.01  

30.00 3.33 0.01 
 

3.62 0.01  

40.00 3.31 0.01 
 

3.60 0.01  
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Figure 5-1: Suspended Sediment Discharge (Groundwater Station) Model Calibration and Validation 
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Figure 5-2: Sensitivity Analysis for Sediment Model 

 

 

Figure 5-3: Calibration and Validation of Carbon Model. Model results are for the 

springhead in comparison with the sediment carbon trap measurements also collected at 

the springhead. 
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Figure 5-4: Sensitivity Analysis for Carbon Model 

 

 

Figure 5-5: Monte Carlo Simulation (n = 10,000) Source Contribution Results for Fixed 
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Figure 5-6: Inflows (a and b) and Outflows (c and d) to the Coupled Drainage Network Normalized by Maximum Flow Rate at Each 

Location 
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Figure 5-7: Well stage at the Groundwater Station (Cell #10) 
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Figure 5-8: Tributary Suspended Sediment Flux with a) high flows and b) low flows 
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Figure 5-9:  Model Results (Groundwater Station) for 2011-2013 Water Years 
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Figure 5-10: Longitudinal Bed Depth Changes in Conduit 
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Figure 5-11: Sediment Organic Carbon Flux in Subsurface Conduit 

 

 

 

Figure 5-12: Organic Carbon Percentage in Suspended Sediment and Bed Sediment 
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Figure 5-13: Fractioning of Carbon Pools in Conduit Bed 

 

 

Figure 5-14: Fractioning of Carbon Sources in Suspended Conduit Load 
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Figure 5-15: Bi-weekly Carbon Decomposition Yield in Subsurface Conduit 
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Figure 5-16: Water Budget for Cane Run Fluviokarst Watershed 
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Figure 5-17: Sediment Budget for Cane Run Fluviokarst Watershed 
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Figure 5-18: Carbon Budget for Cane Run Fluviokarst Watershed 
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Chapter 6 Discussion 

6.1 Karst Conduits as Active Biologic Conveyors  

Data and numerical modeling results from this research provide evidence that 

supports the hypothesis that the subsurface karst conduit acts as an active biological 

conveyor of sediment carbon.  In this manner, the behavior of karst pathways can be 

extended to considering not only the traditional ideas of CO2 dissolution/precipitation 

processes, but also the oxidation of terrestrial derived carbon.  Biologically active karst 

conveyors should be considered in fluvial studies in karst terrain given that the karst 

conduits turnover carbon at a much higher rate as compared to their surface stream 

counterparts.  Both data and modeling point towards support of the hypothesis that the karst 

conduit is an active conveyor.  Results of sediment organic carbon measurement show a 

29.7% loss of sediment carbon when comparing inputs to the karst conduit with outflowing 

sediment at the springhead. Carbon inputs and outputs were significantly different (p-value 

< 1×10-6).  Numerical modeling results also show similar net results with a 26.8% loss of 

sediment carbon when comparing inputs and outputs.  This contrasts surface dominated 

systems in this region which show a 50% enrichment in the carbon signature of transported 

sediment (Ford and Fox, 2012).  

Further support of the hypothesis that the karst conduit in this study is acting as a 

conveyor is justified based on the fact that we can marginalize alternative explanations of 

the results.  Data-driven results of the sediment budget (see Figure 5-18) resulted in 359 

and 272 t y-1 of sediment input to and output from, respectively, the karst conduit 

suggesting that the system is not substantially gaining or losing sediment and therefore is 
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in near quasi-equilibrium with the same sediment continuously being transported through 

the system.  Further, the near identical particle size distributions (see Figure 4-5) of source 

sediments from tributaries in the watershed and sediments collected from the karst conduit 

justify the idea that the same sediments are being studied at both source and sink locations 

and that the additional sediment sources have not been erroneously omitted.  As final 

evidence of this concept, we found that the δ13C of inflowing source sediments and δ13C of 

outflowing conduit sediments were not significantly different (p-value = 0.79) (Table 4-6).  

The lack of difference of the carbon isotope signatures suggests again that the same 

sediments are being studied at both source and sink locations. The carbon budget shows 

that the mass of carbon input (16.3 t y-1) to the system is nearly equal to the mass of carbon 

deposited (16.9 t y-1) within the system which suggests a thorough mixing and assimilation 

of sediment within the conduit (Figure 5-19). The sediments are temporarily stored in the 

karst conduit and sediment organic carbon undergoes microbial oxidation.  However, past 

studies have suggested that the enrichment ratios are relatively small and δ13C is fairly 

conservative (Ford et al., 2015).  In the present study, isotopic enrichment of temporarily 

stored karst sediments would result in a conservative estimate of 0 to 0.5‰ change in the 

carbon isotopic carbon composition.  As mentioned, data results did not reflect any changes 

in δ13C when comparing karst inputs (-26.64±0.80‰) and outputs (-26.61±0.86‰). 

6.2 Physical and Biogeochemical Processes in Karst Systems 

The coupling of our model and data results provides insight into the processes 

controlling sediment organic carbon fate and transport in the karst conduit which could 

also play a role in other karst systems and deserve recognition and further attention. Results 

suggest the importance of highly coupled physical and biogeochemical processes. 
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Processes for which discussion is warranted for this karst system include the limited 

capacity of karst conduits to transport fluid and sediment, the exchange rate of suspended 

and bed sediment, and the decomposition rates of carbon in karst.  

Within the karst phreatic conduit, the sediment transport carrying capacity of the 

fluid is limited during hydrologic events but sustained in the long term, which considerably 

contrasts typical unregulated surface water streamflow.  The behavior of the karst conduit 

is particularly worthy of attention when considering that the conduit transports 

approximately 75% of the water that transports through the watershed and 12% of the 

watershed’s sediment.  During storm events, the downstream adverse hydraulic gradient 

limits the sediment transport carrying capacity and results in net deposition of pirated 

surface-derived sediments.  The piezometric head of the karst groundwater basin and 

phreatic outflow from the conduit results in the sediment transport carrying capacity being 

sustained for days to weeks beyond the corresponding hydrologic peak flow of the surface 

stream.  In turn, clear water in the karst conduit is erosive with excess carrying capacity to 

transport sediment and eroded previously deposited sediments during relatively inactive 

hydrologic time periods.  The storm flow deposition and low to moderate flow erosion 

within the karst conduit results in a near long term equilibrium of the temporary sediment 

storage in the streambed of the subsurface conduit.  In the study period, extreme hydrologic 

activity during the second year provided large quantities of sediment to the subsurface that 

are expected to gradually erode toward equilibrium given enough time.  However, the 

pronounced temporary deposition of high-quality surface sediment promotes the 

biogeochemical processes that turnover carbon in the conduit. 
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In addition to the behavior of the sediment transport carrying capacity of the flow, 

model results suggest the potential importance of a less studied sediment transport physical 

process associated with the exchange of sediment during equilibrium sediment transport, 

i.e., net zero erosion from or deposition to the bed.  Sediment exchange during equilibrium 

is a physical mechanism that in turn impacts sediment organic carbon turnover in the 

conduit temporary storage zones by exchanging the higher carbon density sediment in 

suspension with more depleted sediment from within the conduit bed.  Sediment transport 

scientists have long understood that suspended sediments in turbulent flow can actively 

exchange with stored bed sediments although during equilibrium transport it is recognized 

that the net exchange is zero (e.g., Chang, 1998).  The physics of the sediment exchange 

process has been more recently justified using advanced visualization techniques and it has 

been found that sediment erosion and deposition is coupled to flow coherency (Cellino and 

Lemmin, 2004).  Cellino and Lemmin (2004) showed that low momentum zones of 

coherent fluid that transports settling sediment episodically deposits sediment to the bed 

while fluid ejections associated with the shedding phenomena at the bed episodically re-

suspends bed sediment into the water column.  However, sediment exchange processes 

between the water column and bed during equilibrium transport have been rarely included 

in sediment transport models.  One reason for omitting the equilibrium exchange process 

from models is a lack of need for such detailed information given that the net results sought 

after for sediment transport models have been the downstream transport rates distributed 

over time and the net change in the streambed elevation.  A second reason for omitting the 

exchange process has likely been a lack of methods to help parameterize the exchange 
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process, as studies such as those by Cellino and Lemmin (2004) were experimental in 

nature and limited to the laboratory scale.   

While perhaps understudied, the equilibrium exchange of sediment is potentially of 

high interest in the recent class of scientific studies that emphasize elucidating the role of 

carbon processes in the inland freshwater carbon budget (Battin et al., 2008; Regnier et al., 

2013).  In the case of sediment organic fate and transport in the fluvial system studied here, 

the exchange rate appears important given the potential to exchange labile carbon with 

recalcitrant carbon, the former being temporarily stored and turned over and the latter being 

transported downstream and out of the reach.  Further, the sensitivity of the exchange rate 

upon the net sediment organic carbon transported out of the karst conduit highlights the 

potential of the exchange process to be at least partially controlling in terms of sediment 

organic carbon fate in fluvial systems.  While equilibrium exchange showed sensitivity in 

the present study, it is not fully clear the net importance of the exchange process upon 

sediment organic carbon fate during equilibrium flows in other fluvial systems.  For 

example, in surface streams equilibrium transport can be of short duration as bed sediments 

are eroded to the water column during the rising limb of the hydrograph and upstream 

conveyed sediment are deposited to the bed during the falling limb of the hydrograph.  For 

such occurrences, the exchange during equilibrium may be marginalized in importance 

relative to non-equilibrium exchanges.  In this manner, it is possible that the phreatic karst 

conduits represents a class of fluvial systems in which equilibrium exchange is significant 

due to the fairly limited range of the sediment transport carrying capacity of the flow 

dictated by the downstream hydraulic control.  Nevertheless, given the importance of the 

equilibrium exchange within this study, we suggest further research is needed in fluvial 
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systems with both field based sensor method sand models to gain an understanding of the 

exchange process. 

The sensitivity of carbon decomposition rates and their needed inclusion in the 

sediment carbon continuity equation suggest the prevalence of microbial oxidation in the 

temporarily stored sediments.  Three sub-pools of carbon are associated with the 

transported sediments including autochthonous carbon produced in the surface stream 

channels, litter and terrestrial detritus, and the more recalcitrant soil-derived carbon pool.  

The calibrated reaction rates of the three carbon pools used within the numerical model 

were well within their literature range (Webster et al., 1999; Alvarez and Guerrero, 2000; 

Six and Jastrow, 2002; Ford and Fox, 2012) and agreed well with the sediment carbon 

turnover analysis in surface streams of this region (Ford and Fox, 2015). The 

decomposition rate for soil organic carbon is typically two orders of magnitude less than 

that of other carbon pools, but in the studied karst system the soil decomposition rate is 

only one order of magnitude smaller than that of the litter detritus and autochthonous algae 

decomposition rates which shows that ability of the fluviokarst environment to promote 

accelerated decomposition of carbon sources. The heterotrophic bacteria decomposition of 

carbon provides a carbon loss mechanism within the sediment during temporary storage.   

The subsurface conduit drainage system provides a fairly unique environment in 

this temperate climate that justifies a decomposition of sediment carbon for a number of 

reasons as follows: (i) the constant influx of surface water promotes aerobic conditions in 

the surficial layer of sediments deposited in the subsurface conduits as opposed to 

anaerobic conditions; (ii) there is a lack of autochthonous growth to offset respired carbon 

due to the lack of sunlight in the subsurface environment; (iii) the temporary sediment 
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storage deposits coupled with relatively high water temperatures (mean water temperature 

= 16.2°C) promote an active microbial pool; (iv) agricultural drainage promote high 

nutrient conditions to sustain the microbial pool in the absence of algal organic matter; and 

(v) regular deposition of carbon rich tributary sediment would suggest potential for active 

carbon turnover.   

6.3 Advancement of Water Quality Modeling 

As final contribution of this paper, a note regarding the advancement of water 

quality modeling is warranted.  The progressive method adopted in this paper shows how 

the novel use of stable isotope data can be coupled with more traditional water quality 

modeling in order to assist with understanding the non-linear behavior of sediment carbon 

source, fate and transport in fluviokarst watersheds.  In the present contribution, the stable 

carbon isotopic composition of sediment provides an independent method to assist with 

allocating sources of surface derived sediments to the karst subsurface and justify the 

consistency of the sediment pool studied in the surface and subsurface environments.  

Together with the sediment organic carbon concentration data, the stable isotope datasets 

assisted as inputs and calibration methods for the water quality modeling based on the 

continuity of water, sediment and carbon over the two year modeling duration.   

The research method provides another example of a branch of hydrologic modeling 

that relies on the application of stable isotopes for inputs and verification purposes.  The 

stable isotope composition of sediments has been long used for gaining an understanding 

of sediment carbon provenance in estuary and marine sciences (Martinotti et al., 1997; 

Sigleo and Macko, 2002).  Over the past decade or so, stable isotopes have been 
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increasingly applied within the sediment fingerprinting methodology in order to understand 

erosion sources at catchment and watershed scales (Papanicolaou et al., 2003; Bellanger et 

al., 2004; Fox, 2005, 2009; Fox and Papanicolaou, 2007, 2008; Jacinthe et al., 2009; 

Mukundan et al., 2010; Collins et al., 2013; Jiang and Ji, 2013; Imberger et al., 2014; Ford 

et al., 2015).  The coupling of sediment fingerprinting technology where stable isotopes 

are used as tracers with traditional water quality modeling that simulates sediment and 

sediment carbon continuity is now being published in the recent literature.  Ford and Fox 

(2015) showed using the ISOFLOC model how algal growth and sloughing could be 

calibrated with stable carbon isotopes in order to simulate the fluvial organic carbon budget 

for streams.  Fox and Martin (2015) showed how stable isotopes could be used to assist 

with calibration of model parameters including the sediment delivery ratio and sediment 

transport capacity with a soil erosion and sediment yield model applicable to watersheds 

with mixed land uses.  Coupling of stable isotopes and water quality modeling is a fairly 

new class of research, and it is expected that model advancement and lessons learned from 

the present study as well as the aforementioned studies will assist researchers as they apply 

the stable isotope tools to assist with reducing numerical model uncertainties. 
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Chapter 7 Conclusions 

In this thesis research, coupled biogeochemical and physical processes of water, 

sediment, and carbon are investigated in a temperate, low order fluviokarst watershed in 

central Kentucky, USA. A framework is developed that links surface and subsurface 

sediment transport mechanisms with sediment organic carbon decomposition to estimate 

the flux of sediment in the phreatic conduit and to approximate the extent to which carbon 

dioxide is degassed from stored sediments.   

The physical processes controlling flow and sediment transport in the subsurface 

are a function of the transport carrying capacity of the karst conduit which is limited by a 

downstream subsurface hydraulic dam that results in deposition of pirated surface sediment 

during storm events in the subsurface. Results of the water budget show that 76% of the 

water flow out of the watershed is through the karst conduit. Approximately 12% of the 

tributary produced sediment that is introduced to the main surface channel is pirated from 

the surface to the subterranean conduit. Sensitive parameters in the hydraulic model are 

transport carrying capacity and the settling depth coefficient. 

The biological processes controlling sediment organic carbon flux and 

transformations are driven by the temporary trapping of carbon-rich surface sediments 

within the karst conduit. Litter and soil are the dominant sources of organic carbon into the 

subsurface conduit with algae being a minor source. Sediment organic carbon in the karst 

environment undergo heterotrophic bacteria decomposition resulting in a 30% net loss in 

sediment carbon density. A new parameter, the exchange rate, has been developed to 

represent the net-zero mass exchange mixing of suspended and bed sediments.  Sensitive 



www.manaraa.com

 

137 
 

parameters in the sediment organic carbon model include the exchange factor and the litter 

decomposition rate.  The subsurface karst drainage network exports 0.15 tC km-2 y-1.   

A comparison with a neighboring immature karst would suggest that decomposition 

in karst dominated watersheds results in a loss of carbon density within temporarily trapped 

sediment rather than an enrichment (Ford and Fox, 2012). As a result, sediment within 

karst topography can be seen as a source of carbon dioxide to the atmosphere. From this 

study, carbon dioxide efflux rates for similar fluviokarst watersheds can be estimated at 

0.18 tCO2km-2y-1. The magnitude of the number is low compared to that of surface-

dominated watersheds (Hope et al., 2001; Ford and Fox, 2015), but when considering that 

12% of the earth’s surface is karst, the collective efflux from karst should be included when 

formulating global climate models. 

There are several limitations within the model that if ameliorated could close results 

and provide a cleaner analysis. Data collection efforts within karst watersheds can be 

difficult due to added complexity of physical and hydraulic heterogeneity. More consistent 

and reliable stream gages and velocity probes could remove the need for using surrogate 

gages. Gaging directly upstream and downstream of a large swallet could help to better 

estimate direct flow loss to the subsurface.  Instrumentation of swallets with velocity 

sensors to collect flow, sediment, and carbon data.  Periodic conduit bed samples would 

allow for direct measurements of conduit bed carbon composition to be used as an extra 

tool for calibration.  

To more fully understand how sediment is transported and transformed through 

fluviokarst watersheds, additional work has to be performed to more tightly couple 
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different models and processes, to account for uncertainty in estimating parameters, and to 

extend this analysis to other systems and into the future. A complete hydraulic model 

coupling open channel flow in the surface with pipe flow in the subsurface is needed in the 

future to more closely represent flow dynamics in fluviokarst. Modelling the nitrogen cycle 

in conduit-dominated karst aquifers is another need that may have many implications to 

regional and global nitrogen budgets. Lab experiments should be developed to more closely 

investigate the relationship between the friction factor and other variables in karst rocks. 

Finally, upscaling the results of this research to regional and global scales will provide a 

tool representing fluviokarst processes to researchers that can be used in future water, 

sediment, and carbon budgeting.  
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